Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 341: 113717, 2021 07.
Article in English | MEDLINE | ID: mdl-33839142

ABSTRACT

Schwann cells are essential for peripheral nerve regeneration but, over short distances in acellular nerve grafts, extracellular matrix (ECM) molecules can support growth. The ECM molecules are present also on denervated muscle surfaces where they can support nerve growth. In this study, we addressed the efficacy of the ECM molecules of denervated muscle to support nerve fiber regeneration and muscle reinnervation. In the hindlimb of Sprague-Dawley rats, the proximal stump of the transected posterior tibial nerve, was cross-sutured to the distal nerve stump (NN) of each of three denervated muscles, tibialis anterior, extensor digitorum longus, and soleus, or implanted onto the denervated muscles' surfaces (N-M), proximal or distal to the endplate zone. Recordings of muscle and motor unit (MU) isometric forces and silver/cholinesterase histochemical staining of longitudinal muscle cryosections were used to determine the numbers of reinnervated MUs and the spatial course of regenerating nerve fibers, respectively. MU numbers declined significantly after N-M (>50%) as compared to those after NN. Muscle forces were reduced despite each nerve reinnervating up to three times the normal MU muscle fiber number. Regenerating nerves 'streamed' from the N-M site either proximal or distal to endplate zones toward the denervated intramuscular endoneurial tubes, with reduced numbers reinnervating endplates. We conclude that there is preferential reinnervation through the endoneurial tube and that it is important to drive implanted nerve fibers to enter endoneurial tubes for optimal muscle reinnervation. Schwann cells play the essential role in guiding regenerating nerve fibers to reinnervate denervated muscle fibers.


Subject(s)
Isometric Contraction/physiology , Muscle, Skeletal/physiology , Nerve Regeneration/physiology , Peripheral Nerves/physiology , Recruitment, Neurophysiological/physiology , Animals , Electromyography/methods , Female , Muscle Denervation/methods , Muscle, Skeletal/innervation , Rats , Rats, Sprague-Dawley
2.
Dent Clin North Am ; 56(3): 639-49, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22835543

ABSTRACT

Regenerative endodontics has encountered substantial challenges toward clinical translation. The adoption by the American Dental Association of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for most endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation.


Subject(s)
Dental Pulp/physiopathology , Endodontics/methods , Regeneration/physiology , Stem Cells/physiology , Tissue Engineering/methods , Apexification/methods , Contraindications , Endodontics/trends , Humans , Stem Cell Transplantation/economics , Tissue Scaffolds/chemistry
3.
Int J Oral Sci ; 3(3): 107-16, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21789959

ABSTRACT

A tooth is a complex biological organ and consists of multiple tissues including the enamel, dentin, cementum and pulp. Tooth loss is the most common organ failure. Can a tooth be regenerated? Can adult stem cells be orchestrated to regenerate tooth structures such as the enamel, dentin, cementum and dental pulp, or even an entire tooth? If not, what are the therapeutically viable sources of stem cells for tooth regeneration? Do stem cells necessarily need to be taken out of the body, and manipulated ex vivo before they are transplanted for tooth regeneration? How can regenerated teeth be economically competitive with dental implants? Would it be possible to make regenerated teeth affordable by a large segment of the population worldwide? This review article explores existing and visionary approaches that address some of the above-mentioned questions. Tooth regeneration represents a revolution in stomatology as a shift in the paradigm from repair to regeneration: repair is by metal or artificial materials whereas regeneration is by biological restoration. Tooth regeneration is an extension of the concepts in the broad field of regenerative medicine to restore a tissue defect to its original form and function by biological substitutes.


Subject(s)
Regeneration , Regenerative Medicine , Tooth/physiology , Adult Stem Cells , Animals , Humans , Signal Transduction , Stem Cell Transplantation , Tissue Engineering , Tissue Scaffolds
4.
Tissue Eng Part B Rev ; 17(5): 373-88, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21699433

ABSTRACT

Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth.


Subject(s)
Biocompatible Materials/pharmacology , Regeneration/drug effects , Tooth/drug effects , Tooth/physiology , Animals , Cell Transplantation , Humans
5.
Tissue Eng Part A ; 16(10): 3023-31, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20486799

ABSTRACT

Tooth infections or injuries involving dental pulp are treated routinely by root canal therapy. Endodontically treated teeth are devitalized, susceptible to re-infections, fractures, and subsequent tooth loss. Here, we report regeneration of dental-pulp-like tissue by cell homing and without cell transplantation. Upon in vivo implantation of endodontically treated real-size, native human teeth in mouse dorsum for the tested 3 weeks, delivery of basic fibroblast growth factor and/or vascular endothelial growth factor (bFGF and/or VEGF) yielded re-cellularized and revascularized connective tissue that integrated to native dentinal wall in root canals. Further, combined delivery of bFGF, VEGF, or platelet-derived growth factor (PDGF) with a basal set of nerve growth factor (NGF) and bone morphogenetic protein-7 (BMP7) generated cellularized and vascularized tissues positive of VEGF antibody staining and apparent neo-dentin formation over the surface of native dentinal wall in some, but not all, endodontically treated teeth. Newly formed dental pulp tissue appeared dense with disconnected cells surrounded by extracellular matrix. Erythrocyte-filled blood vessels were present with endothelial-like cell lining. Reconstructed, multiple microscopic images showed complete fill of dental-pulp-like tissue in the entire root canal from root apex to pulp chamber with tissue integration to dentinal wall upon delivery of bFGF, VEGF, or PDGF with a basal set of NGF and BMP7. Quantitative ELISA showed that combinatory delivery of bFGF, VEGF, or PDGF with basal NGF and BMP7 elaborated von Willerbrand factor, dentin sialoprotein, and NGF. These findings represent the first demonstration of regenerated dental-pulp-like tissue in endodontically treated root canals of real-size, native human teeth. The present chemotaxis-based approach has potent cell homing effects for re-cellularization and revascularization in endodontically treated root canals in vivo, although in an ectopic model. Regeneration of dental pulp by cell homing, rather than cell delivery, may accelerate clinical translation.


Subject(s)
Chemotaxis , Dental Pulp/cytology , Dental Pulp/metabolism , Tissue Engineering/methods , Animals , Bone Morphogenetic Protein 7/pharmacology , Chemotaxis/drug effects , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix Proteins/metabolism , Fibroblast Growth Factor 2/pharmacology , Humans , Immunohistochemistry , Male , Mice , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Nerve Growth Factor/pharmacology , Phosphoproteins/metabolism , Sialoglycoproteins/metabolism , Tissue Scaffolds/chemistry , Tooth, Nonvital , Vascular Endothelial Growth Factor A/pharmacology , von Willebrand Factor/metabolism
6.
Tissue Eng Part B Rev ; 16(2): 257-62, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19891541

ABSTRACT

The face distinguishes one human being from another. When the face is disfigured because of trauma, tumor removal, congenital anomalies, or chronic diseases, the patient has a strong desire for functional and esthetic restoration. Current practice of facial reconstruction using autologous grafts, synthetic fillers, and prostheses is frequently below the surgeon's and patient's expectations. Facial reconstruction is yet to take advantage of recent advances in seemingly unrelated fields of stem cell biology, chemical engineering, biomaterials, and tissue engineering. "Biosurgery," a new concept that we propose, will incorporate novel principles and strategies of bioactive cues, biopolymers, and/or cells to restore facial defects. Small facial defects can likely be reconstructed by cell homing and without cell transplantation. A critical advantage of cell homing is that agilely recruited endogenous cells have the potential to harness the host's innate capacity for regeneration, thus accelerating the rate of regulatory and commercialization processes for product development. Large facial defects, however, may not be restorable without cell delivery per our understanding at this time. New breakthrough in biosurgery will likely originate from integrated strategies of cell biology, cytokine biology, chemical engineering, biomaterials, and tissue engineering. Regardless of cell homing or cell delivery approaches, biosurgery not only will minimize surgical trauma and repetitive procedures, but also produce long-lasting results. At the same time, caution must be exercised against the development of products that lack scientific basis or dogmatic combination of cells, biomaterials, and biomolecules. Together, scientifically derived biosurgery will undoubtedly develop into new technologies that offer increasingly natural reconstruction and/or augmentation of the face.


Subject(s)
Cell Movement/physiology , Cell Transplantation/methods , Face/surgery , Facial Transplantation/methods , Plastic Surgery Procedures/methods , Animals , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...