Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 8: 1035, 2020.
Article in English | MEDLINE | ID: mdl-32984291

ABSTRACT

Microalgae is a promising organism as the feedstock of the next generation biofuels, as well as high value nature products, such as astaxanthin, normally under certain stress cultivation conditions. With the clear industrialization targets, there have been two waves of microalgae R&D from the last century and showed obvious energy-driven trends. The overall R&D came into a valley now, however, the promising is still there. So here, from the industrialization point of view, the patent evolution concerning the microalgae for biofuels in the second wave were reviewed and summarized. These technology information will help the scientists to join together with industry to drive the next boost.

2.
J Environ Sci (China) ; 26(8): 1741-9, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25108731

ABSTRACT

The development of highly active carbon material catalysts in catalytic wet air oxidation (CWAO) has attracted a great deal of attention. In this study different carbon material catalysts (multi-walled carbon nanotubes, carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction, the removal of phenol was nearly 100% over the functionalized multi-walled carbon, while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals, which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions, a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First, maleic acid is transformed directly into malonic acid. Second, acetic acid is oxidized into an unknown intermediate, which is then oxidized into CO2 and H2O. Finally, formic acid and oxalic acid can mutually interconvert when conditions are favorable.


Subject(s)
Air/analysis , Carbon/chemistry , Phenol/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Molecular Structure , Oxidation-Reduction , Water
3.
Biotechnol Bioeng ; 105(1): 59-68, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19725041

ABSTRACT

Sessile filter-feeding marine sponges (Porifera) have been reported to possess high efficiency in removing bacteria pollution from natural or aquaculture seawater. However, no investigation has been carried out thus far in a true mariculture farm water system. Therefore this study sought to investigate the ability of the marine sponge Hymeniacidon perlevis to bioremediate the bacteria pollution in the intensive aquaculture water system of turbot Scophthalmus maximus. Sponge specimens were hung in fish culture effluent at different temperature to investigate the optimal temperature condition for bacteria removal by H. perlevis. Turbots S. maximus were co-cultured with sponge H. perlevis in 1.5 m(3) of water system at 15-18 degrees C for 6 weeks to control the growth of bacteria. It was found that H. perlevis was able to remove pathogenic bacteria efficiently at 10-20 degrees C, with a maximal removal of 71.4-78.8% of fecal coliform, 73.9-98.7% of pathogenic vibrio, and 75.0-83.7% of total culturable bacteria from fish-culture effluent at 15 degrees C; H. perlevis continuously showed good bioremediation of bacteria pollution in the S. maximus culture water system, achieving removal of 60.0-90.2% of fecal coliform, 37.6-81.6% of pathogenic vibrio, and 45.1-83.9% of total culturable bacteria. The results demonstrate that H. perlevis is an effective bioremediator of bacteria pollution in the turbot S. maximus culture farm water system.


Subject(s)
Biodegradation, Environmental , Flatfishes/microbiology , Porifera/microbiology , Water Pollution , Animals , Fisheries , Seawater , Temperature
4.
Cell Tissue Res ; 329(3): 595-608, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17593397

ABSTRACT

To characterize the formation of silica spicules, the dynamics of spiculogenesis of an intertidal marine sponge Hymeniacidon perlevis (Montagu 1818) (Porifera: Demospongiae) were investigated by measuring the gene expression of silicatein (the enzyme responsible for spicule silicification) and the dimensional changes of spicules during the developmental process of individual sponges and in cell cultures of primmorphs of archaeocyte-dominant cell populations. The different developmental stages of spicules were documented by time-lapse microscopy and observed by transmission electron microscopy during a 1-month culture period. During its annual life cycle, H. perlevis has four different developmental stages: dormancy, resuscitation, bloom, and decline. Field-grown individual sponge samples at different stages were collected over 7 months (March to September 2005). The dimensions of the silica spicules from these samples were microscopically measured and statistically analyzed. This analysis and the material properties of the spicules allowed them to be classified into four groups representing the different developmental stages of spiculogenesis. Silicatein expression in the bloom stage was more than 100 times higher than that in the other stages and was correlated with the spicule developmental stage. The trend of spicule formation in field-grown sponges was consistent with the trend in cell culture. A new parameter, the maturation degree (MD) of spicules (defined as the ratio of actual to theoretical silica deposition of mature spicules), was introduced to quantify spicule development. Silica spiculogenesis during H. perlevis development was delineated by comparing MD and silicatein expression.


Subject(s)
Porifera/cytology , Animals , Cells, Cultured , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Porifera/growth & development
5.
Biotechnol Bioeng ; 97(6): 1387-97, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17274061

ABSTRACT

The aim of this study is to investigate the potential of using marine sponge Hymeniacidon perleve to remove total organic carbon (TOC) in integrated aquaculture ecosystems. In sterilized natural seawater (SNSW) with different concentrations of TOC, H. perleve removed approximately 44-61% TOC during 24 h, with retention rates of ca. 0.19-1.06 mg/h .g-fresh sponge, however no particulate selectivity was observed. The highest initial TOC concentration, in which about 2.7 g fresh sponges could remove TOC effectively in 0.5-L SNSW, is 214.3-256.9 mg/L. The highest capacity of TOC removal and clearance rate (CR) by H. perleve is ca. 25.50 mg-TOC/g-fresh sponge and 7.64 mL/h . g-fresh sponge within 24 h, respectively. Until reaching the highest TOC removal capacity, the TOC removal capacity and clearance rate of H. perleve increased with initial TOC concentration, and dropped dramatically thereafter. After reaching the highest removal capacity, H. perleve could only remove relatively lower TOC concentration in seawater in subsequent run. The TOC removal kinetics in SNSW by H. perleve fitted very well with a S-shaped curve and a Logistic model equation (R(2) = 0.999). In different volumes of SNSW with a fixed initial TOC concentration, the weight/volume ratio of sponge biomass and SFNSW was optimized at 1.46 g-fresh sponge/1-L SNSW to achieve the maximum TOC removal. When co-cultured with marine fish Fugu rubripes for 15 days, H. perleve removed TOC excreted by F. rubripes with similar retention rates of ca. 0.15 mg/h . g-fresh sponge, and the sponge biomass increased by 22.8%.


Subject(s)
Aquaculture/methods , Carbon/metabolism , Ecosystem , Marine Biology/methods , Porifera/metabolism , Water Pollutants, Chemical/metabolism , Animals , Aquaculture/instrumentation , Biodegradation, Environmental , Feasibility Studies , Seawater , Systems Integration
6.
Biotechnol Bioeng ; 93(6): 1112-22, 2006 Apr 20.
Article in English | MEDLINE | ID: mdl-16470871

ABSTRACT

The aim of this article is to investigate the potential of using sponges as a bioremediator to remove pathogenic bacteria in integrated aquaculture ecosystems. Using the inter-tidal marine sponge Hymeniacidon perleve as a model system, the ability of removing the most common pathogens Escherichia coli and Vibrio anguillarum II in aquaculture waters was screened in laboratory tests. In sterilized natural seawater (SNSW) supplemented with E. coli at (7.0-8.3) x 10(6) cells/mL, H. perleve can remove an average 96% of E.coli within 10.5 h at a filter rate of ca. (7.53-8.03) x 10(7) cells/h x g of fresh sponge in two independent tests. Despite the removal efficiency and filter rate are similar; the clearance rates (CR) vary significantly among individual sponge specimens and between two batches. For the tests on V. anguillarum II in SNSW, about 1.5 g fresh sponges can keep the pathogen growth under control at a lower initial density 3.6 x 10(4) cells/mL of 200 mL water volume. Further tests were done for 24 h using about 12 g fresh sponge in 2-L actual seawater collected from two aquaculture sites that have ca. eightfold difference in pathogenic bacteria load. The concentrations of E. coli, Vibrio, and total bacteria at 24 h in treatment groups were markedly lower, at about 0.9%, 6.2%-34.5%, and 13.7%-22.5%, respectively, of those in the control. Using a fluoresce stain 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, E. coli, and V. anguillarum II cells were stained and fed to sponges in two independent tests. The confocal microscope observation confirmed that the sponges filtering-retained and digested these bacteria by phagocytosis.


Subject(s)
Aquaculture , Ecosystem , Escherichia coli/physiology , Porifera/physiology , Vibrio/physiology , Animals , Colony Count, Microbial , Microscopy, Confocal , Phagocytosis/physiology , Porifera/microbiology , Seawater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...