Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Insect Sci ; 31(2): 599-612, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37489338

ABSTRACT

Mosquitoes are of great medical significance as vectors of many deadly diseases. Mitogenomes have been widely used in phylogenetic studies, but mitogenome knowledge within the family Culicidae is limited, and Culicidae phylogeny is far from resolved. In this study, we surveyed the mitogenomes of 149 Culicidae species, including 7 newly sequenced species. Comparative analysis of 149 mosquito mitogenomes shows gene composition and order to be identical to that of an ancestral insect, and the AT bias, length variation, and codon usage are all consistent with that of other reported Dipteran mitogenomes. Phylogenetic analyses based on the DNA sequences of the 13 protein-coding genes from the 149 species robustly support the monophyly of the subfamily Anophelinae and the tribes Aedini, Culicini, Mansoniini, Sabethini, and Toxorhynchitini. To resolve ambiguous relationships between clades within the subfamily Culicinae, we performed topological tests and show that Aedini is a sister to Culicini and that Uranotaeniini is a sister to (Mansoniini + (Toxorhynchitini + Sabethini)). In addition, we estimated divergence times using a Bayesian relaxation clock based on the sequence data and 3 fossil calibration points. The results show mosquitoes diverged during the Early Jurassic with massive Culicinae radiations during the Cretaceous, coincident with the emergence of angiosperms and the burst of mammals and birds. Overall, this study, which uses the largest number of Culicidae mitogenomes sequenced to date, comprehensively reveals the mitogenome characteristics and mitogenome-based phylogeny and divergence times of Culicidae, providing information for further studies on the mitogenome, phylogeny, evolution, and taxonomic revision of Culicidae.


Subject(s)
Culicidae , Genome, Mitochondrial , Animals , Culicidae/genetics , Phylogeny , Bayes Theorem , Mosquito Vectors/genetics , Mammals/genetics
2.
Int J Food Microbiol ; 387: 110055, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36527793

ABSTRACT

Viruses are highly abundant in nature, associated with quality and safety of traditional fermented foods. However, the overall viral diversity and function are still poorly understood in food microbiome. Traditional baijiu fermentation is an ideal model system to examine the diversity and function of viruses owing to easy access, stable operation, and domesticated microbial community. Equipped with cutting-edge viral metagenomics, we investigated the viral community in the fermented grain and fermentation environment, as well as their contribution to baijiu fermentation. Viral communities in the fermented grains and fermentation environment are highly similar. The dominant viruses were bacteriophages, mainly including the order Caudovirales and the family Inoviridae. Furtherly, association network analysis showed that viruses and bacteria were significantly negatively correlated (P < 0.01). Viral diversity could significantly influence bacterial and fungal succession (P < 0.05). Moreover, we proved that starter phages could significantly inhibit the growth of Bacillus licheniformis in the logarithmic growth stage (P < 0.05) under culture condition. Based on the functional annotations, viruses and bacteria both showed high distribution of genes related to amino acid and carbohydrate metabolism. In addition, abundant auxiliary carbohydrate-active enzyme (CAZyme) genes were also identified in viruses, indicating that viruses were involved in the decomposition of complex polysaccharides during fermentation. Our results revealed that viruses could crucially affect microbial community and metabolism during traditional fermentation.


Subject(s)
Bacteriophages , Microbiota , Fermentation , Bacteria/genetics , Bacteria/metabolism , Microbiota/genetics , Food , Bacteriophages/genetics
3.
Mitochondrial DNA B Resour ; 7(7): 1203-1205, 2022.
Article in English | MEDLINE | ID: mdl-35814178

ABSTRACT

The complete mitochondrial genome (mitogenome) sequences of Papilio nephelus chaon and Papilio epycides were sequenced by Illumina and analyzed in this study. They are 15,287 bp and 15,012 bp in size, respectively, and contains 13 protein-coding genes (PCGs), 22 tRNA genes (tRNAs), 2 rRNA genes (rRNAs), and 1 AT-rich control region (CR). The phylogenetic relationships of 56 species in the Papilionidae were inferred based on concatenated nucleotide sequences by using Maximum Likelihood with the selected best-fit model GTR + F+R6. The phylogenetic analysis showed that P. nephelus chaon and P. epycides were located in the genus Papilio. This study provides a basis for further study on mitogenome and phylogenetics of the Papilionidae.

4.
Mitochondrial DNA B Resour ; 7(3): 478-479, 2022.
Article in English | MEDLINE | ID: mdl-35311210

ABSTRACT

Parnassius glacialis is a butterfly species distributed in China, Korea, Japan. The complete P. glacialis mitochondrial genome was assembled using Illumina sequencing data. The mitogenome is 15,353 bp long and contains 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. A phylogenetic analysis of P. glacialis and 14 related Papilionidae species indicated that P. glacialis is clustered with other Parnassius species. This study generated useful genetic information for future studies on the taxonomy, phylogeny, and evolution of Papilionidae species.

5.
Mitochondrial DNA B Resour ; 6(12): 3346-3347, 2021.
Article in English | MEDLINE | ID: mdl-34746410

ABSTRACT

Paranticopsis xenocles Doubleday belongs to the Paranticopsis of Papilionidae and is mainly distributed in China mainland. Herein, we report the complete mitogenome of P. xenocles reconstructing from Illumina sequence data. The mitogenome is 15,187 bp in length and contains 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. The phylogenetic analysis indicated that P. xenocles were clustered within Paranticopsis. This study would provide useful genetic information for future studies on taxonomy, phylogeny, and evolution of Papilionidae species.

6.
Parasit Vectors ; 14(1): 452, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488869

ABSTRACT

BACKGROUND: Despite the medical importance of mosquitoes of the genus Anopheles in the transmission of malaria and other human diseases, its phylogenetic relationships are not settled, and the characteristics of mitochondrial genome (mitogenome) are not thoroughly understood. METHODS: The present study sequenced and analyzed the complete mitogenomes of An. peditaeniatus and An. nitidus, investigated genome characteristics, and inferred the phylogenetic relationships of 76 Anopheles spp. RESULTS: The complete mitogenomes of An. peditaeniatus and An. nitidus are 15,416 and 15,418 bp long, respectively, and both include 13 PCGs, 22 tRNAs, two tRNAs and one control region (CR). Mitogenomes of Anopheles spp. are similar to those of other insects in general characteristics; however, the trnR and trnA have been reversed to "trnR-trnA," as has been reported in other mosquito genera. Genome variations mainly occur in CR length (493-886 bp) with six repeat unit types identified for the first time that demonstrate an evolutionary signal. The subgenera Lophopodomyia, Stethomyia, Kerteszia, Nyssorhynchus, Anopheles and Cellia are inferred to be monophyletic, and the phylogenetic analyses support a new phylogenetic relationship among the six subgenera investigated, in that subgenus Lophopodomyia is the sister to all other five subgenera, and the remaining five subgenera are divided into two clades, one of which is a sister-taxon subgenera Stethomyia + Kerteszia, and the other consists of subgenus Nyssorhynchus as the sister to a sister-group subgenera Anopheles + Cellia. Four series (Neomyzomyia, Pyretophorus, Neocellia and Myzomyia) of the subgenus Cellia, and two series (Arribalzagia and Myzorhynchus) of the subgenus Anopheles were found to be monophyletic, whereas three sections (Myzorhynchella, Argyritarsis and Albimanus) and their subdivisions of the subgenus Nyssorhynchus were polyphyletic or paraphyletic. CONCLUSIONS: The study comprehensively uncovered the characteristics of mitogenome and the phylogenetics based on mitogenomes in the genus Anopheles, and provided information for further study on the mitogenomes, phylogenetics and taxonomic revision of the genus.


Subject(s)
Anopheles/genetics , Genome, Mitochondrial , Phylogeny , Animals , Anopheles/classification , Base Sequence , Evolution, Molecular , Sequence Analysis, DNA , Species Specificity
7.
Front Psychiatry ; 12: 694051, 2021.
Article in English | MEDLINE | ID: mdl-34421678

ABSTRACT

Objective: The 2019 novel coronavirus disease (COVID-19) broke out in Hubei Province and spread rapidly to the whole country, causing huge public health problems. College students are a special group, and there is no survey on insomnia among college students. The purpose of this study was to investigate the incidence and related factors of insomnia in college students during the period of COVID-19. Method: A total of 1,086 college students conducted a cross-sectional study through the questionnaire star platform. The survey time was from February 15 to February 22, 2020. The collected information included demographic informatics and mental health scale, Athens Insomnia Scale (AIS) to assess sleep quality, Self-Reporting Questionnaire-20 (SRQ-20) to assess general psychological symptoms, Chinese perceived stress scale (CPSS) to assess stress. We used logistic regression to analyze the correlation between related factors and insomnia symptoms. Results: The prevalence of insomnia, general psychological symptoms and stress were 16.67, 5.8, and 40.70%, respectively. Multivariate logistic regression analysis showed that gender (OR = 1.55, p = 0.044, 95% CI = 1.00-2.41), general psychological symptoms (OR = 1.49, p < 0.01, 95% CI = 1.40-1.60) and living in an isolation unit (OR = 2.21, p = 0.014, 95% CI = 1.17-4.16) were risk factors for insomnia of college students. Conclusion: Our results show that the insomnia is very common among college students during the outbreak of covid-19, and the related factors include gender, general psychological symptoms and isolation environment. It is necessary to intervene the insomnia of college students and warrants attention for mental well-being of college students.

8.
Rev Cardiovasc Med ; 22(1): 247-256, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33792269

ABSTRACT

ST-segment elevation myocardial infarction (STEMI) is a common cardiovascular emergency for which timely reperfusion therapies are needed to minimize myocardial necrosis. The aim of this study was to investigate the impact of the COVID-19 pandemic and reorganization of chest pain centers (CPC) on the practice of primary percutaneous coronary intervention (PPCI) and prognosis of STEMI patients. This single-center retrospective survey included all patients with STEMI admitted to our CPC from January 22, 2020 to April 30, 2020 (during COVID-19 pandemic in Wuhan), compared with those admitted during the analogous period in 2019, in respect of important time points of PPCI and clinical outcomes of STEMI patients. In the present article, we observed a descending trend in STEMI hospitalization and a longer time from symptom onset to first medical contact during the COVID-19 pandemic as compared to the control period (4.35 h versus 2.58 h). With a median delay of 17 minutes in the door to balloon time (D2B), the proportion of in-hospital cardiogenic shock was significantly higher in the COVID-19 era group (47.6% versus 19.5%), and major adverse cardiac events (MACE) tend to increase in the 6-month follow-up period (14.3% versus 2.4%). Although the reorganization of CPC may prolong the D2B time, immediate revascularization of the infarct-related artery could be offered to most patients within 90 minutes upon arrival. PPCI remained the preferred treatment for patients with STEMI during COVID-19 pandemic in the context of timely implementation and appropriate protective measures.


Subject(s)
COVID-19 , Myocardial Infarction , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , China/epidemiology , Delivery of Health Care , Humans , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/therapy , Pandemics , Percutaneous Coronary Intervention/adverse effects , Prognosis , Retrospective Studies , SARS-CoV-2 , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/epidemiology
9.
Front Plant Sci ; 12: 802737, 2021.
Article in English | MEDLINE | ID: mdl-35082816

ABSTRACT

In this study, the capacity to tune root morphogenesis by a plant growth-promoting rhizobacterium, Streptomyces lincolnensis L4, was investigated from various aspects including microbial physiology, root development, and root endophytic microbial community. Strain L4 was isolated from the root-associated soil of 7-year plantation of Artemisia annua. Aiming at revealing the promotion mechanism of Streptomyces on root growth and development, this study first evaluated the growth promotion characters of S. lincolnensis L4, followed by investigation in the effect of L4 inoculation on root morphology, endophytic microbiota of root system, and expression of genes involved in root development in Arabidopsis thaliana. Streptomyces lincolnensis L4 is able to hydrolyze organic and inorganic phosphorus, fix nitrogen, and produce IAA, ACC deaminase, and siderophore, which shaped specific structure of endophytic bacterial community with dominant Streptomyces in roots and promoted the development of roots. From the observation of root development characteristics, root length, root diameter, and the number of root hairs were increased by inoculation of strain L4, which were verified by the differential expression of root development-related genes in A. thaliana. Genomic traits of S. lincolnensis L4 which further revealed its capacity for plant growth promotion in which genes involved in phosphorus solubilization, ACC deamination, iron transportation, and IAA production were identified. This root growth-promoting strain has the potential to develop green method for regulating plant development. These findings provide us ecological knowledge of microenvironment around root system and a new approach for regulating root development.

10.
J Am Med Inform Assoc ; 27(10): 1576-1584, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33029642

ABSTRACT

OBJECTIVE: Normalizing clinical mentions to concepts in standardized medical terminologies, in general, is challenging due to the complexity and variety of the terms in narrative medical records. In this article, we introduce our work on a clinical natural language processing (NLP) system to automatically normalize clinical mentions to concept unique identifier in the Unified Medical Language System. This work was part of the 2019 n2c2 (National NLP Clinical Challenges) Shared-Task and Workshop on Clinical Concept Normalization. MATERIALS AND METHODS: We developed a hybrid clinical NLP system that combines a generic multilevel matching framework, customizable matching components, and machine learning ranking systems. We explored 2 machine leaning ranking systems based on either ensemble of various similarity features extracted from pretrained encoders or a Siamese attention network, targeting at efficient and fast semantic searching/ranking. Besides, we also evaluated the performance of a general-purpose clinical NLP system based on Unstructured Information Management Architecture. RESULTS: The systems were evaluated as part of the 2019 n2c2 challenge, and our original best system in the challenge obtained an accuracy of 0.8101, ranked fifth in the challenge. The improved system with newly designed machine learning ranking based on Siamese attention network improved the accuracy to 0.8209. CONCLUSIONS: We demonstrate the successful practice of combining multilevel matching and machine learning ranking for clinical concept normalization. Our results indicate the capability and interpretability of our proposed approach, as well as the limitation, suggesting the opportunities of achieving better performance by combining general clinical NLP systems.


Subject(s)
Machine Learning , Natural Language Processing , Unified Medical Language System , Humans , Semantics
11.
BMC Infect Dis ; 20(1): 787, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33092539

ABSTRACT

BACKGROUND: A cluster of acute respiratory illness, now known as Corona Virus Disease 2019 (COVID-19) caused by 2019 novel coronavirus (SARS-CoV-2), has become a global pandemic. Aged population with cardiovascular diseases are more likely be to infected with SARS-CoV-2 and result in more severe outcomes and elevated case-fatality rate. Meanwhile, cardiovascular diseases have a high prevalence in the middle-aged and elderly population. However, despite of several researches in COVID-19, cardiovascular implications related to it still remains largely unclear. Therefore, a specific analysis in regard to cardiovascular implications of COVID-19 patients is in great need. METHODS: In this single-centered, retrospective, observational study, 116 patients with laboratory-confirmed COVID-19 were enrolled, who admitted to the General Hospital of Central Theater Command (Wuhan, China) from January 20 to March 8, 2020. The demographic data, underlying comorbidities, clinical symptoms and signs, laboratory findings, chest computed tomography, treatment measures, and outcome data were collected from electronic medical records. Data were compared between non-severe and severe cases. RESULTS: Of 116 hospitalized patients with COVID-19, the median age was 58.5 years (IQR, 47.0-69.0), and 36 (31.0%) were female. Hypertension (45 [38.8%]), diabetes (19 [16.4%]), and coronary heart disease (17 [14.7%]) were the most common coexisting conditions. Common symptoms included fever [99 (85.3%)], dry cough (61 [52.6%]), fatigue (60 [51.7%]), dyspnea (52 [44.8%]), anorexia (50 [43.1%]), and chest discomfort (50 [43.1%]). Local and/or bilateral patchy shadowing were the typical radiological findings on chest computed tomography. Lymphopenia (lymphocyte count, 1.0 × 109/L [IQR, 0.7-1.3]) was observed in 66 patients (56.9%), and elevated lactate dehydrogenase (245.5 U/L [IQR, 194.3-319.8]) in 69 patients (59.5%). Hypokalemia occurred in 24 (20.7%) patients. Compared with non-severe cases, severe cases were older (64.0 years [IQR, 53.0-76.0] vs 56.0 years [IQR, 37.0-64.0]), more likely to have comorbidities (35 [63.6%] vs 24 [39.3%]), and more likely to develop acute cardiac injury (19 [34.5%] vs 4 [6.6%]), acute heart failure (18 [32.7%] vs 3 [4.9%]), and ARDS (20 [36.4%] vs 0 [0%]). During hospitalization, the prevalence of new onset hypertension was significantly higher in severe patients (55.2% vs 19.0%) than in non-severe ones. CONCLUSIONS: In this single-centered, retrospective, observational study, we found that the infection of SARS-CoV-2 was more likely to occur in middle and aged population with cardiovascular comorbidities. Cardiovascular complications, including new onset hypertension and heart injury were common in severe patients with COVID-19. More detailed researches in cardiovascular involvement in COVID-19 are urgently needed to further understand the disease.


Subject(s)
Comorbidity , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Hospitalization/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Aged , Betacoronavirus , COVID-19 , China/epidemiology , Coronavirus Infections/pathology , Cough/epidemiology , Female , Fever/epidemiology , Humans , Lymphopenia/epidemiology , Lymphopenia/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Retrospective Studies , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology
12.
ACS Appl Mater Interfaces ; 12(34): 38232-38240, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32799453

ABSTRACT

All-solid-state lithium-ion batteries (ASSLIBs) are receiving tremendous attention for safety concerns over liquid system. However, current ASSLIBs still suffer from poor cycling and rate performance because of unfavorable interfacial contact between solid electrolyte and electrodes, especially in the alloy-based anode. To wet the solid electrode/electrolyte interface, accommodate volume change, and further boost kinetics, liquid metal Ga is introduced into the representative Sb anode, and its corresponding role is comprehensively revealed by experimental results and theoretical calculations for the first time. In addition to interface contact and strain accommodation, with the aid of in situ generation of liquid metal Ga, the lithiation/de-lithiation activity of Sb is stimulated, showing outstanding rate and cycling performance in half cells. Furthermore, benefited from the in situ chemical reaction, TiS2 powder can be directly used to construct a novel "Li-free" TiS2|LiBH4|GaSb full cell, which exhibits an outstanding capacity retention of 226 mA h g-1 after 1000 cycles at a current density of 0.5 A g-1. This work provides guidance for implementing future rational design of alloy anodes within ASSLIBs.

13.
J Phys Chem Lett ; 11(8): 3025-3031, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32182078

ABSTRACT

The proton transport behaviors through graphane in the electrochemical environment are not only determined by the film but also correlated with the properties of the electrolytes. Here, the effect of electrolytes is studied for this transport process. The step of proton transfer from electrolyte to graphane is the rate-determining step of the whole transport process in most of the studied cases and is indeed influenced much by the electrolytes, while the following steps are affected little. Its energy barrier increases significantly with the number of water molecules but only fluctuates with the number of mimicked Nafion molecules until the bulk case. This barrier could be further affected by the hydration number of Nafion and be reduced by increasing local proton concentrations. The dynamical effect of the environment and the nuclear quantum effect are found to further reduce the energy barrier of the transport process but by a relatively small amount.

14.
Polymers (Basel) ; 12(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150904

ABSTRACT

Poly(N-isopropylacrylamide) (PNIPAM)-based thermosensitive hydrogels demonstrate great potential in biomedical applications. However, they have inherent drawbacks such as low mechanical strength, limited drug loading capacity and low biodegradability. Formulating PNIPAM with other functional components to form composited hydrogels is an effective strategy to make up for these deficiencies, which can greatly benefit their practical applications. This review seeks to provide a comprehensive observation about the PNIPAM-based composite hydrogels for biomedical applications so as to guide related research. It covers the general principles from the materials choice to the hybridization strategies as well as the performance improvement by focusing on several application areas including drug delivery, tissue engineering and wound dressing. The most effective strategies include incorporation of functional inorganic nanoparticles or self-assembled structures to give composite hydrogels and linking PNIPAM with other polymer blocks of unique properties to produce copolymeric hydrogels, which can improve the properties of the hydrogels by enhancing the mechanical strength, giving higher biocompatibility and biodegradability, introducing multi-stimuli responsibility, enabling higher drug loading capacity as well as controlled release. These aspects will be of great help for promoting the development of PNIPAM-based composite materials for biomedical applications.

15.
Nanomaterials (Basel) ; 9(11)2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31689988

ABSTRACT

A series of helium (He) charged nanograin-sized erbium (Er) films were deposited by direct current (DC)-magnetron sputtering with different He/Ar mixture gases. The microstructure and mechanical properties of He-charged Er films were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and nanoindentation. The helium concentrations in Er films, determined by elastic recoil detection analysis (ERDA), ranged from 0 to 49.6%, with the increase in He:Ar flow ratio up to 18:1. The XRD results show that the grain sizes of Er films decreased with and increase in He content. The embedded He atoms induced the formation of spherical nanometer He bubbles, and the diameter of the He bubbles increased with the He content. The hardness and Young's modulus increased and decreased with the decreasing grain sizes of polycrystalline Er-He films. The mechanisms of mechanical properties with respect to the grain size and He content were discussed based on the Hall-Petch formula and composite spheres model.

16.
Parasit Vectors ; 12(1): 368, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31349856

ABSTRACT

BACKGROUND: Despite the medical importance of the genus Culex, the mitochondrial genome (mt genome) characteristics of Culex spp. are not well understood. The phylogeny of the genus and particularly the generic status of the genus Lutzia and the subgenus Culiciomyia remain unclear. METHODS: The present study sequenced and analyzed the complete mt genomes of Lutzia halifaxia, Lutzia fuscanus and Cx. (Culiciomyia) pallidothorax and assessed the general characteristics and phylogenetics of all known 16 mt genome sequences for species in the genera Culex and Lutzia. RESULTS: The complete mt genomes of Lt. halifaxia, Lt. fuscanus and Cx. pallidothorax are 15,744, 15,803 and 15,578 bp long, respectively, including 13 PCGs, 22 tRNAs, two tRNAs and a control region (CR). Length variations in the Culex and Lutzia mt genomes involved mainly the CR, and gene arrangements are the same as in other mosquitoes. We identified four types of repeat units in the CR sequences, and the poly-T stretch exists in all of these mt genomes. The repeat units of CR are conserved to different extent and provide information on their evolution. Phylogenetic analyses demonstrated that the Coronator and Sitiens groups are each monophyletic, whereas the monophyletic status of the Pipiens Group was not supported; Cx. pallidothorax is more closely related to the Sitiens and Pipiens groups; and both phylogenetics analysis and repeat unit features in CR show that Lutzia is a characteristic monophyletic entity, which should be an independent genus. CONCLUSIONS: To our knowledge, this is the first comprehensive review of the mt genome sequences and taxonomic discussion based on the mt genomes of Culex spp. and Lutzia spp. The research provides general information on the mt genome of these two genera, and the phylogenetic and taxonomic status of Lutzia and Culiciomyia.


Subject(s)
Culicidae/genetics , Genome, Mitochondrial , Phylogeny , Animals , Culicidae/classification , Female , Sequence Analysis, DNA
17.
J Phys Chem Lett ; 10(16): 4618-4624, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31241949

ABSTRACT

Based on density functional theory calculations, the chemical penetration behaviors and separation properties of hydrogen isotope ions through pristine and fully hydrogenated group-IV monolayer materials are investigated. Both the penetration energy profiles and kinetic isotope effects are studied to evaluate the performance of four group-IV (C, Si, Ge, and Sn) monolayer materials for hydrogen isotope separation. To examine the thermodynamically stable morphologies of these monolayer materials in electrochemical aqueous environment, the Pourbaix diagrams varying with pH and external bias are constructed. The fully hydrogenated monolayer materials are found to be thermodynamically favorable in some conditions, and the proton penetration and hydrogen isotope separation behaviors are different from their pristine counterparts. The silicene is found to be a suitable candidate material for hydrogen isotope separation in an electrochemical environment.

18.
Int J Mol Sci ; 20(6)2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30897799

ABSTRACT

background: The ATP-binding cassette (ABC) transporters family is one of the largest families of membrane proteins existing in all living organisms. Pyrethroid resistance has become the largest unique obstacle for mosquito control worldwide. ABC transporters are thought to be associated with pyrethroid resistance in some agricultural pests, but little information is known for mosquitoes. Herein, we investigated the diversity, location, characteristics, phylogenetics, and evolution of ABC transporter family of genes in the Anopheles sinensis genome, and identified the ABC transporter genes associated with pyrethroid resistance through expression profiles using RNA-seq and qPCR. Results: 61 ABC transporter genes are identified and divided into eight subfamilies (ABCA-H), located on 22 different scaffolds. Phylogenetic and evolution analyses with ABC transporters of A. gambiae, Drosophila melanogaster, and Homo sapiens suggest that the ABCD, ABCG, and ABCH subfamilies are monophyly, and that the ABCC and ABCG subfamilies have experienced a gene duplication event. Both RNA-seq and qPCR analyses show that the AsABCG28 gene is uniquely significantly upregulated gene in all three field pyrethroid-resistant populations (Anhui, Chongqing, and Yunnan provinces) in comparison with a laboratory-susceptible strain from Jiangsu province. The AsABCG28 is significantly upregulated at 12-h and 24-h after deltamethrin exposure in three-day-old female adults. Conclusion: This study provides the information frame for ABC transporter subfamily of genes, and lays an important basis for the better understanding and further research of ABC transporter function in insecticide toxification. The AsABCG28 gene is associated with pyrethroid detoxification, and it functions at later period in the detoxification process for xenobiotics transportation.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Anopheles/drug effects , Anopheles/metabolism , Insecticides/pharmacology , Pyrethrins/pharmacology , ATP-Binding Cassette Transporters/classification , ATP-Binding Cassette Transporters/genetics , Animals , Anopheles/genetics , Gene Expression , Insecticide Resistance/genetics , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , Nitriles/pharmacology , Phylogeny
19.
Malar J ; 18(1): 62, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30845961

ABSTRACT

BACKGROUND: UDP-glycosyltransferase (UGT) is an important biotransformation superfamily of enzymes. They catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules, and function in several physiological processes, including detoxification, olfaction, cuticle formation, pigmentation. The diversity, classification, scaffold location, characteristics, phylogenetics, and evolution of the superfamily of genes at whole genome level, and their association and mutations associated with pyrethroid resistance are still little known. METHODS: The present study identified UGT genes in Anopheles sinensis genome, classified UGT genes in An. sinensis, Anopheles gambiae, Aedes aegypti and Drosophila melanogaster genomes, and analysed the scaffold location, characteristics, phylogenetics, and evolution of An. sinensis UGT genes using bioinformatics methods. The present study also identified the UGTs associated with pyrethroid resistance using three field pyrethroid-resistant populations with RNA-seq and RT-qPCR, and the mutations associated with pyrethroid resistance with genome re-sequencing in An. sinensis. RESULTS: There are 30 putative UGTs in An. sinensis genome, which are classified into 12 families (UGT301, UGT302, UGT306, UGT308, UGT309, UGT310, UGT313, UGT314, UGT315, UGT36, UGT49, UGT50) and further into 23 sub-families. The UGT308 is significantly expanded in gene number compared with other families. A total of 119 UGTs from An. sinensis, An. gambiae, Aedes aegypti and Drosophila melanogaster genomes are classified into 19 families, of which seven are specific for three mosquito species and seven are specific for Drosophila melanogaster. The UGT308 and UGT302 are proposed to main families involved in pyrethroid resistance. The AsUGT308D3 is proposed to be the essential UGT gene for the participation in biotransformation in pyrethroid detoxification process, which is possibly regulated by eight SNPs in its 3' flanking region. The UGT302A3 is also associated with pyrethroid resistance, and four amino acid mutations in its coding sequences might enhance its catalytic activity and further result in higher insecticide resistance. CONCLUSIONS: This study provides the diversity, phylogenetics and evolution of UGT genes, and potential UGT members and mutations involved in pyrethroid resistance in An. sinensis, and lays an important basis for the better understanding and further research on UGT function in defense against insecticide stress.


Subject(s)
Anopheles/drug effects , Anopheles/enzymology , Glycosyltransferases/genetics , Insecticide Resistance , Insecticides/pharmacology , Mutant Proteins/genetics , Pyrethrins/pharmacology , Aedes/enzymology , Aedes/genetics , Animals , Anopheles/genetics , Computational Biology , Drosophila/enzymology , Drosophila/genetics , Female , Gene Expression Profiling , Glycosyltransferases/metabolism , Mutant Proteins/metabolism , Mutation , Phylogeny , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
20.
ACS Appl Mater Interfaces ; 11(12): 11403-11413, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30816695

ABSTRACT

Ultrathin two-dimensional metal-organic frameworks (2D MOFs) have the potential to improve the performance of Li-O2 batteries with high O2 accessibility, open catalytic active sites, and large surface areas. To obtain highly efficient cathode catalysts for aprotic Li-O2 batteries, a facile ultrasonicated method has been developed to synthesize three kinds of 2D MOFs (2D Co-MOF, Ni-MOF, and Mn-MOF). Contributing from the inherent open active sites of the Mn-O framework, the discharge specific capacity of 9464 mAh g-1 is achieved with the 2D Mn-MOF cathode, higher than those of the 2D Co-MOF and Ni-MOF cathodes. During the cycling test, the 2D Mn-MOF cathode stably operates more than 200 cycles at 100 mA g-1 with a curtailed discharge capacity of 1000 mAh g-1, quite longer than those of others. According to further electrochemical analysis, we observe that the 2D Mn-MOF outperforms 2D Ni-MOF and Co-MOF due to a superior oxygen reduction reactions and oxygen evolution reactions activity, in particular, the efficient oxidation of both LiOH and Li2O2. The present study provides new insights that the 2D MOF nanosheets can be well applied as the Li-O2 cells with high energy density and long cycling life.

SELECTION OF CITATIONS
SEARCH DETAIL
...