Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomol Biomed ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972052

ABSTRACT

Osteoporotic femoral neck fractures (OFNFs) pose a significant orthopedic challenge in the elderly population, accounting for up to 40% of all osteoporotic fractures and leading to considerable health deterioration and increased mortality. In addressing the critical need for early identification of osteoporosis through routine screening of femoral neck bone mineral density (FNBMD), this study developed a user-friendly prediction model aimed at men aged 50 years and older, a demographic often overlooked in osteoporosis screening. Utilizing data from the National Health and Nutrition Examination Survey (NHANES), the study involved outlier detection and handling, missing value imputation via the K nearest neighbor (KNN) algorithm, and data normalization and encoding. The dataset was split into training and test sets with a 7:3 ratio, followed by feature screening through the least absolute shrinkage and selection operator (LASSO) and the Boruta algorithm. Eight different machine learning algorithms were then employed to construct predictive models, with their performance evaluated through a comprehensive metric suite. The random forest regressor (RFR) emerged as the most effective model, characterized by key predictors such as age, body mass index (BMI), poverty income ratio (PIR), serum calcium, and race, achieving a coefficient of determination (R²) of 0.218 and maintaining robustness in sensitivity analyses. Notably, excluding race from the model resulted in sustained high performance, underscoring the model's adaptability. Interpretations using Shapley additive explanations (SHAP) highlighted the influence of each feature on FNBMD. These findings indicate that our predictive model effectively aids in the early detection of osteoporosis, potentially reducing the incidence of OFNFs in this high-risk population.

2.
J Transl Med ; 21(1): 664, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37743498

ABSTRACT

BACKGROUND: Rapid identification of high-risk polytrauma patients is crucial for early intervention and improved outcomes. This study aimed to develop and validate machine learning models for predicting 72 h mortality in adult polytrauma patients using readily available clinical parameters. METHODS: A retrospective analysis was conducted on polytrauma patients from the Dryad database and our institution. Missing values pertinent to eligible individuals within the Dryad database were compensated for through the k-nearest neighbor algorithm, subsequently randomizing them into training and internal validation factions on a 7:3 ratio. The patients of our institution functioned as external validation cohorts. The predictive efficacy of random forest (RF), neural network, and XGBoost models was assessed through an exhaustive suite of performance indicators. The SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) methods were engaged to explain the supreme-performing model. Conclusively, restricted cubic spline analysis and multivariate logistic regression were employed as sensitivity analyses to verify the robustness of the findings. RESULTS: Parameters including age, body mass index, Glasgow Coma Scale, Injury Severity Score, pH, base excess, and lactate emerged as pivotal predictors of 72 h mortality. The RF model exhibited unparalleled performance, boasting an area under the receiver operating characteristic curve (AUROC) of 0.87 (95% confidence interval [CI] 0.84-0.89), an area under the precision-recall curve (AUPRC) of 0.67 (95% CI 0.61-0.73), and an accuracy of 0.83 (95% CI 0.81-0.86) in the internal validation cohort, paralleled by an AUROC of 0.98 (95% CI 0.97-0.99), an AUPRC of 0.88 (95% CI 0.83-0.93), and an accuracy of 0.97 (95% CI 0.96-0.98) in the external validation cohort. It provided the highest net benefit in the decision curve analysis in relation to the other models. The outcomes of the sensitivity examinations were congruent with those inferred from SHAP and LIME. CONCLUSIONS: The RF model exhibited the best performance in predicting 72 h mortality in adult polytrauma patients and has the potential to aid clinicians in identifying high-risk patients and guiding clinical decision-making.


Subject(s)
Algorithms , Lactic Acid , Adult , Humans , Retrospective Studies , Machine Learning
3.
Med ; 4(11): 825-848.e13, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37516104

ABSTRACT

BACKGROUND: Translating aging rejuvenation strategies into clinical practice has the potential to address the unmet needs of the global aging population. However, to successfully do so requires precise quantification of aging and its reversal in a way that encompasses the complexity and variation of aging. METHODS: Here, in a cohort of 113 healthy women, tiled in age from young to old, we identified a repertoire of known and previously unknown markers associated with age based on multimodal measurements, including transcripts, proteins, metabolites, microbes, and clinical laboratory values, based on which an integrative aging clock and a suite of customized aging clocks were developed. FINDINGS: A unified analysis of aging-associated traits defined four aging modalities with distinct biological functions (chronic inflammation, lipid metabolism, hormone regulation, and tissue fitness), and depicted waves of changes in distinct biological pathways peak around the third and fifth decades of life. We also demonstrated that the developed aging clocks could measure biological age and assess partial aging deceleration by hormone replacement therapy, a prevalent treatment designed to correct hormonal imbalances. CONCLUSIONS: We established aging metrics that capture systemic physiological dysregulation, a valuable framework for monitoring the aging process and informing clinical development of aging rejuvenation strategies. FUNDING: This work was supported by the National Natural Science Foundation of China (32121001), the National Key Research and Development Program of China (2022YFA1103700 and 2020YFA0804000), the National Natural Science Foundation of China (81502304), and the Quzhou Technology Projects (2022K46).


Subject(s)
Aging , East Asian People , Humans , Female , Aged , Aging/genetics , Phenotype , Rejuvenation , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...