Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37895765

ABSTRACT

The aim of this paper is to investigate the mechanism of an electric current-assisted superplastic deformation on 3Y-TZP in an oxygen-lean atmosphere. The experiments were performed with different electric currents in the range of 0~5 A. The results show that the flow stress of 3Y-TZP during the deformation was significantly decreased by the combination of Joule heating and the applied current effect. The microstructures of the deformed specimens were all equiaxed grains without an obvious preferential grain growth. The stress exponent n = 2.05~2.61 suggested that the dominant deformation of 3Y-YZP with/without the electric current was grain boundary sliding at 1400 °C. The activation energy of the deformation which decreased from 465 kJ mol-1 to 315 kJ mol-1 by the electric current indicated that the lattice diffusion of Zr cation during the deformation was enhanced. And the deformation rate of 3Y-TZP with the electric current may be controlled by the grain boundary diffusion of Zr cation.

2.
Materials (Basel) ; 16(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36837370

ABSTRACT

Copper and its alloys are used widely in marine environments, and anisotropic corrosion influences the corrosion kinetics of copper. Corrosion of copper in an electrolyte containing Cl- is described as a dissolution-deposition process, which is a prolonged process. Therefore, it is laborious to clarify the corrosion anisotropy in different stages. In this paper, electrochemical impedance spectroscopy (EIS) following elapsed open circuit potential (OCP) test with 0 h (0H), 24 h (24H) and 10 days (10D) was adopted. To exclude interruptions such as grain boundary and neighbor effect, single crystal (SC) Cu(100) and Cu(111) were employed. After 10D OCP, cross-sectional slices were cut and picked up by a focused ion beam (FIB). The results showed that the deposited oxide was Cu2O and Cu(100)/Cu(111) experienced different corrosion behaviors. In general, Cu(100) showed more excellent corrosion resistance. Combined with equivalent electrical circuit (EEC) diagrams, the corrosion mechanism of Cu(100)/Cu(111) in different stages was proposed. In the initial stage, a smaller capacitive loop of Cu(111) suggested preferential adsorption of Cl- on air-formed oxide film on Cu(111). Deposited oxide and exposed bare metals also played an important role in corrosion resistance. Rectangle indentations and pyramidal structures formed on Cu(100)/Cu(111), respectively. Finally, a perfect interface on Cu(100) explained the tremendous capacitive loop and higher impedance (14,274 Ω·cm2). Moreover, defects in the oxides on Cu(111) provided channels for the penetration of electrolyte, leading to a lower impedance (9423 Ω·cm2) after 10D corrosion.

3.
Materials (Basel) ; 15(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36500082

ABSTRACT

The effect of shot peen forming on the corrosion-resistant of 2024 aluminum alloy in a salt spray environment was studied with an electrochemical workstation. The surface morphology and cross sectional morphology of the original and shot peen-formed sample were studied by a scanning electron microscope. After shot peen forming, the salt spray corrosion resistance of 2024 aluminum alloy was worsened (the corrosion rates of the original alloy and the shot peen-formed alloy were 0.10467 mg/(cm2·h) and 0.27333 mg/(cm2·h), respectively, when the salt spray corrosion time was 5 h). The radius of capacitive reactance arc of the sample subjected to shot peen forming was smaller than that of the original sample. When the salt spray corrosion time was 5 h, the doping density (NA) of the original alloy was 2.5128 × 10-13/cm3. After shot peen forming, the NA of the alloy increased to 15 × 10-13/cm3. For the shot peen-formed sample, pitting corrosion first occurred in the crater lap zone and became severe with salt spray time. The cross sectional morphology of both original and the shot peen-formed samples shows that severe intergranular corrosion occurred in the salt spray environment. However, for the original sample, the intergranular corrosion distribution was lamellar. For shot peen-formed sample, the intergranular corrosion distribution was network.

4.
J Fungi (Basel) ; 8(2)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35205933

ABSTRACT

Endophytic fungi are effective in plant growth and development by secreting various kinds of plant hormones and nutrients. However, the cellular and molecular interactions between the endophytic fungi and plant growth-promoting have remained less explored. The present study was designed to explore the effects of the infection and colonization events of Chaetomium globosum strain ND35 on cucumber growth and the expression pattern of some metabolically important genes in development of the cucumber radicle. The results demonstrated that strain ND35 can infect and colonize the outer layers (cortical cells) of cucumber root and form a symbiotic structure with the host cell, similar to a periarbuscular membrane and establish chemical communication with the plant. Through transcriptome analysis, we found the differentially expressed genes (DEGs) caused by strain ND35 were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction and photosynthesis. Correspondingly, the contents of reactive oxygen species (ROS), hydrogen peroxide (H2O2), indole-3-acetic acid (IAA), gibberellin (GA), zeatin (ZT), salicylic acid (SA), jasmonic acid (JA) and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) in ND35-colonized seedlings were generally higher than those of non-inoculated seedlings. Overall, the infection and colonization events of C. globosum strain ND35 increased cucumber growth through complex regulation of plant hormones biosynthesis and metabolism. Furthermore, although the endophytic fungus strain ND35 produced IAA, GA, ZT, and ergosterol in the fermentation broth, and there are enabled to promote growth of cucumber, it is uncertain whether there are ND35-derived microbial hormones in plants. This study of the interaction between cucumber and strain ND35 contributes to a better understanding of the plant-endophytic fungi interactions, and may help to develop new strategies for crop production.

5.
Front Microbiol ; 12: 724842, 2021.
Article in English | MEDLINE | ID: mdl-34690965

ABSTRACT

Fusarium wilt is an important disease of many food crops and often causes serious damages to yield and food quality. Consequently, numerous studies mainly focused on exploring the control strategy for Fusarium oxysporum as well as the mechanism of interaction between the F. oxysporum and other beneficial soil microorganisms. In this study, we have screened and identified an efficient biocontrol strain from the soil with infection of F. oxysporum f. sp. momordica (referred to as Fom), Talaromyces purpurogenus Q2 (referred to as TpQ2), which could be effective to reduce relative abundance of the rhizospheric Fom, leading to a significant decrease of Fusarium wilt disease incidence in bitter gourd during the greenhouse and field trails. TpQ2 can reduce the relative abundance of rhizospheric Fom through inhibition of growth and development of Fom. During the co-cultivation of TpQ2 and Fom, we confirmed that TpQ2 could significantly suppress the growth and development of Fom through disturbing the normal hyphae shape and function of the cell walls of Fom via secreting cell wall-degrading enzymes and suppression of the expression of cell wall biosynthesis genes, such as FomCFEM. In the meantime, TpQ2 showed a strong negative correlation with F. oxysporum in soil and positive correlation with beneficial indigenous microorganisms that had significant negative correlation with Fusarium populations, such as Streptomycetes, Lysobacter, and Sphingobium. To summarize, TpQ2 has a good biocontrol efficacy on Fusarium wilt of bitter gourd. The biocontrol mechanisms of TpQ2 on Fusarium wilt are complex and diverse.

6.
Int J Infect Dis ; 105: 68-74, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33578005

ABSTRACT

OBJECTIVE: To determine the duration of SARS-CoV-2 persistence in quarantine hotel environments. METHODS: 39 Patients confirmed by RT-PCR were included. We collected clinical features, laboratory test results, smear sample information, and quarantine room information. Genome sequencing and phylogenetic analysis were conducted. We analyzed the factors associated with environmental contamination. RESULT: Among 39 COVID-19 cases, 10 were asymptomatic and 37 were imported from aboard. We collected 271 swab samples from environmental surfaces related to observational patients. Eighteen swab samples from seven patients were positive. The highest contamination rates occurred on cups (100%), followed by hand sink (12.82%), toilet seat and flush (7.89%), telephone (5.56%), bedside table (5.56%), and floor drain (5.41%). The results showed that environmental surface contamination was associated with the clinical cycle threshold values for patients (P = 0.01) and the sampling interval time after the cases left their rooms (P = 0.03). The duration of environmental surface contamination was associated with the wet status of the sampling site (P = 0.01). CONCLUSION: Our findings showed that environmental contamination might be attributed to the viral load in the respiratory tracts of patients and the sampling interval time after the cases left their rooms. Moist surfaces were more vulnerable to remaining SARS-CoV-2 RNA-positive. Our study highlights the importance of implementing strict chemical disinfection strategies in quarantine rooms.


Subject(s)
COVID-19/prevention & control , Environmental Microbiology , Quarantine , SARS-CoV-2/isolation & purification , Disinfection/methods , Female , Humans , Male , Time Factors , Viral Load
7.
Appl Opt ; 59(33): 10312-10320, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33361962

ABSTRACT

Disease classification and lesion segmentation of retinal optical coherence tomography images play important roles in ophthalmic computer-aided diagnosis. However, existing methods achieve the two tasks separately, which is insufficient for clinical application and ignores the internal relation of disease and lesion features. In this paper, a framework of cascaded convolutional networks is proposed to jointly classify retinal diseases and segment lesions. First, we adopt an auxiliary binary classification network to identify normal and abnormal images. Then a novel, to the best of our knowledge, U-shaped multi-task network, BDA-Net, combined with a bidirectional decoder and self-attention mechanism, is used to further analyze abnormal images. Experimental results show that the proposed method reaches an accuracy of 0.9913 in classification and achieves an improvement of around 3% in Dice compared to the baseline U-shaped model in segmentation.


Subject(s)
Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Retinal Diseases/classification , Retinal Diseases/diagnostic imaging , Tomography, Optical Coherence/methods , Algorithms , Choroidal Neovascularization/diagnostic imaging , Diabetic Retinopathy/diagnostic imaging , Diagnosis, Computer-Assisted , Humans , Macular Edema/diagnostic imaging , Retinal Drusen/diagnostic imaging
8.
Materials (Basel) ; 12(13)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31247938

ABSTRACT

In this study, the compressive deformation of zirconia toughened alumina (ZTA) ceramics doped with different amounts of TiO2 dopants were investigated in the temperature range of 1300-1400 °C to evaluate the stress exponent (n value) and apparent deformation activation energy (Q value). With 0-8 wt.% TiO2 dopants, the n values and Q values of the TiO2-doped ZTA ceramics were calculated as 2-3 and 605-749 kJ/mol, respectively. Moreover, three grain boundary features were observed in these deformed materials, named the clean grain boundary, thin liquid phase grain boundary, and thick liquid phase grain boundary. Based on the deformation behavior and microstructure evolution, it was found that the lower apparent activation energy and higher strain rate of TiO2-doped ZTA ceramics are intensively related to the grain boundary feature.

9.
Materials (Basel) ; 11(8)2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30111760

ABSTRACT

Three different bonding couples assembled by two commonly used aerospace aluminum alloys were bonded within the temperature range of 460⁻520 °C under 6 MPa for 60 min in vacuum atmosphere. The interface microstructure and alloying elements distribution of the bonded joints were determined by scanning electron microscope (SEM) and Energy Dispersive Spectroscope (EDS); the bond strength was evaluated by tensile-shear strength test. The results show the bond quality improved effectively as the bonding temperature increased. Compared with the 1420-1420 and 7B04-7B04 bonding couples, the 1420-7B04 couples obtained better interface integrity and higher bond strength, the highest shear strength for 1420-7B04 couple can be as high as 188 MPa when bonded at 520 °C. Special attention was focused on the 1420-7B04 couple, the diffusion coefficient of Mg at the original interface under different temperatures were investigated, the results show the diffusion coefficient increased obviously as the bonding temperature increased. A diffusion affected zone (DAZ) without continuous intermetallic phases formed due to the diffusion of alloying elements across the bonding interface. The combined action of temperature and alloying elements gradient resulted in the increase of alloying elements diffusion fluxes, which in turn promote the bonding quality through the accelerated shrinkage of interfacial voids.

10.
Chin J Cancer Res ; 23(3): 208-13, 2011 Sep.
Article in English | MEDLINE | ID: mdl-23467843

ABSTRACT

OBJECTIVE: Estradiol (E2) plays an important role in the development of breast cancer. In postmenopausal women, the estrogen can be synthesized via aromatase (CYP19) pathway and steroid-sulfatase (STS) pathway in peripheral tissues, when the production in ovary has ceased. The objective of our study was to explore the effects of Shu-Gan-Liang-Xue Decoction (SGLXD) on the expressions of CYP19 and STS in estrogen receptor positive breast cancer MCF-7 and T47D cells. METHODS: The effects of SGLXD on the cell viability of MCF-7 and T47D were analyzed by MTT assay. By quantitative real-time RT-PCR and Western blot, we evaluated the mRNA and protein expressions of CYP19 and STS in MCF-7 and T47D cells after SGLXD treatment. RESULTS: By MTT assay, the cell viability rates of MCF-7 and T47D were significantly inhibited by SGLXD in a dose-dependent manner, the IC50 values were 40.07 mg/ml for MCF-7 cells and 25.62 mg/ml for T47D cells, respectively. As evidenced by real-time PCR and Western blot, the high concentrations of SGLXD significantly down-regulated the expressions of CYP19 and STS both in the transcript level and the protein level. CONCLUSION: The results suggest that SGLXD is a potential dual aromatase-sulfatase inhibitor by simultaneously down-regulating the expressions of CYP19 and STS in MCF-7 and T47D cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...