Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.064
Filter
1.
J Food Sci ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838085

ABSTRACT

Freezing is a popular method of food preservation with multiple advantages. However, it may change the internal composition and quality of food. This study aimed to investigate the effect of modified starch on the storage stability of frozen raw noodles (FRNs) under refrigerated storage conditions. Oxidized starch (OS), a modified starch, is widely used in the food industry. In the present study, texture and cooking loss rate analyses showed that the hardness and chewiness of FRNs with added OS increased and the cooking loss rate decreased during the frozen storage process. Low-field nuclear magnetic resonance characterization confirmed that the water-holding capacity of FRNs with OS was enhanced. When 6% OS was added, the maximum freezable water content of FRNs was lower than the minimum freezable water content (51%) of FRNs without OS during freezing. Fourier-transform infrared spectroscopy showed that after the addition of OS, the secondary structures beneficial for structural maintenance were increased, forming a denser protein network and improving the microstructure of FRNs. In summary, the water state, protein structure, and quality characteristics of FRNs were improved by the addition of OS within an appropriate range.

2.
Oncoimmunology ; 13(1): 2363000, 2024.
Article in English | MEDLINE | ID: mdl-38846085

ABSTRACT

NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in most solid cancers, emerging as a promising target for tumor-selective killing. ß-Lapachone (ß-Lap), an NQO1 bioactivatable drug, exhibits significant antitumor effects on NQO1-positive cancer cells by inducing immunogenic cell death (ICD) and enhancing tumor immunogenicity. However, the interaction between ß-Lap-mediated antitumor immune responses and neutrophils, novel antigen-presenting cells (APCs), remains unknown. This study demonstrates that ß-Lap selectively kills NQO1-positive murine tumor cells by significantly increasing intracellular ROS formation and inducing DNA double strand breaks (DSBs), resulting in DNA damage. Treatment with ß-Lap efficiently eradicates immunocompetent murine tumors and significantly increases the infiltration of tumor-associated neutrophils (TANs) into the tumor microenvironment (TME), which plays a crucial role in the drug's therapeutic efficacy. Further, the presence of ß-Lap-induced antigen medium leads bone marrow-derived neutrophils (BMNs) to directly kill murine tumor cells, aiding in dendritic cells (DCs) recruitment and significantly enhancing CD8+ T cell proliferation. ß-Lap treatment also drives the polarization of TANs toward an antitumor N1 phenotype, characterized by elevated IFN-ß expression and reduced TGF-ß cytokine expression, along with increased CD95 and CD54 surface markers. ß-Lap treatment also induces N1 TAN-mediated T cell cross-priming. The HMGB1/TLR4/MyD88 signaling cascade influences neutrophil infiltration into ß-Lap-treated tumors. Blocking this cascade or depleting neutrophil infiltration abolishes the antigen-specific T cell response induced by ß-Lap treatment. Overall, this study provides comprehensive insights into the role of tumor-infiltrating neutrophils in the ß-Lap-induced antitumor activity against NQO1-positive murine tumors.


Subject(s)
NAD(P)H Dehydrogenase (Quinone) , Naphthoquinones , Neutrophils , Tumor Microenvironment , Animals , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/immunology , Mice , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Neutrophil Infiltration/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Female , Phenotype
3.
Nat Commun ; 15(1): 4701, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830882

ABSTRACT

Immune checkpoint blockade (ICB) therapies function by alleviating immunosuppression on tumor-infiltrating lymphocytes (TILs) but are often insufficient to fully reactivate these dysfunctional TILs. Although interleukin 12 (IL-12) has been used in combination with ICB to improve efficacy, this remains limited by severe toxicity associated with systemic administration of this cytokine. Here, we engineer a fusion protein composed of an anti-PD-1 antibody and a mouse low-affinity IL-12 mutant-2 (αPD1-mIL12mut2). Systemic administration of αPD1-mIL12mut2 displays robust antitumor activities with undetectable toxicity. Mechanistically, αPD1-mIL12mut2 preferentially activates tumor-infiltrating PD-1+CD8+T cells via high-affinity αPD-1 mediated cis-binding of low-affinity IL-12. Additionally, αPD1-mIL12mut2 treatment exerts an abscopal effect to suppress distal tumors, as well as metastasis. Collectively, αPD1-mIL12mut2 treatment induces robust systemic antitumor responses with reduced side effects.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-12 , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Animals , Interleukin-12/metabolism , Interleukin-12/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Mice , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Mice, Inbred C57BL , Cell Line, Tumor , Female , Immune Checkpoint Inhibitors/pharmacology , Humans , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics
4.
Mikrochim Acta ; 191(6): 298, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709403

ABSTRACT

As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA , Electrochemical Techniques , Gold , Limit of Detection , Metal Nanoparticles , Neoplastic Cells, Circulating , Palladium , Neoplastic Cells, Circulating/pathology , Humans , MCF-7 Cells , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Gold/chemistry , DNA/chemistry , Biosensing Techniques/methods , Palladium/chemistry
5.
Heliyon ; 10(9): e29807, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737244

ABSTRACT

Dihydroquercetin (DHQ) is commonly used as a dietary additive, but its activity in improving brain injury with metabolic syndrome (MS) remains known. In present study, the MS rat model was induced using 10 % fructose water. The apoptosis rate of primary brain cells was detected. The HIF-1α/AKT/NR2B signalling pathway, levels of KEAP1/NRF2, HO-1 and NQO-1 were detected. In vitro experiments were performed using H2O2-stimulated PC-12 cells. The effect of DHQ on rates of cell survival and apoptosis were detected. After silencing HIF-1α, we further elucidate the mechanism of action of DHQ. The results indicated that DHQ reduced the hyperactivity and inhibited oxidative stress via increasing the levels of HIF-1α/AKT/NR2B signalling pathway, whereas regulated KEAP1/NRF2 pathway. In vitro experiments showed that the HIF-1α plays an important role in this process. Overall, DHQ may improve impaired brain function in rats with metabolic syndrome by regulating the HIF-1α/AKT/NR2B signalling pathway.

6.
Mikrochim Acta ; 191(6): 355, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809308

ABSTRACT

Carbon dots (CDs) are nanoscale carbon materials with unique optical properties and biocompatibility. Their applications are limited by their tendency to aggregate or oxidize in aqueous environments. Turning weakness to strengths, CDs can be incorporated with hydrogels, which are three-dimensional networks of crosslinked polymers that can retain large amounts of water. Hydrogels can provide a stable and tunable matrix for CDs, enhancing their fluorescence, stability, and functionality. CDs@hydrogels, known for their ease of synthesis, strong binding capabilities, and rich surface functional groups, have emerged as promising composite materials. In this review, recent advances in the synthesis and characterization of CDs@hydrogels, composite materials composed of CDs and various types of natural or synthetic hydrogels, are summarized. The potential applications of CDs@hydrogels in fluorescence sensing, adsorption, drug delivery, antibacterial activity, flexible electronics, and energy storage are also highlighted. The current challenges and future prospects of CDs@hydrogels systems for the novel functional materials are discussed.

7.
ACS Nano ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809421

ABSTRACT

Effective anticancer immunity depends on properly activating multiple stepwise events in the cancer-immunity cycle. An immunologically "cold" tumor microenvironment (TME) engenders immune evasion and refractoriness to conventional checkpoint blockade immunotherapy. Here, we combine nanoparticle formulations and an in situ formed hydrogel scaffold to treat accessible tumors locally and to stimulate systemic immunity against metastatic tumor lesions. The nanoparticles encapsulate poly(ε-caprolactone)-derived cytotoxic chemotherapy and adjuvant of Toll-like receptor 7/8 through a reactive oxygen species (ROS)-cleavable linker that can be self-activated by the coassembled neighboring photosensitizer following near-infrared (NIR) laser irradiation. Further development results in syringeable, NIR light-responsive, and immunogenic hydrogel (iGEL) that can be implanted peritumorally and deposited into the tumor surgical bed. Upon NIR laser irradiation, the generated ROS induces iGEL degradation and bond cleavage in the polymer-drug conjugates, triggering the immunogenic cell death cascade in cancer cells and spontaneously releasing encapsulated agents to rewire the cancer-immunity cycle. Notably, upon application in multiple preclinical models of melanoma and triple-negative breast cancer, which are aggressive and refractory to conventional immunotherapy, iGEL induces durable remission of established tumors, extends postsurgical tumor-free survival, and inhibits metastatic burden. The result of this study is a locally administrable immunogenic hydrogel for triggering host systemic immunity to improve immunotherapeutic efficacy with minimal off-target side effects.

8.
Article in English | MEDLINE | ID: mdl-38809736

ABSTRACT

Graph neural networks (GNNs) are widely used for analyzing graph-structural data and solving graph-related tasks due to their powerful expressiveness. However, existing off-the-shelf GNN-based models usually consist of no more than three layers. Deeper GNNs usually suffer from severe performance degradation due to several issues including the infamous "over-smoothing" issue, which restricts the further development of GNNs. In this article, we investigate the over-smoothing issue in deep GNNs. We discover that over-smoothing not only results in indistinguishable embeddings of graph nodes, but also alters and even corrupts their semantic structures, dubbed semantic over-smoothing. Existing techniques, e.g., graph normalization, aim at handling the former concern, but neglect the importance of preserving the semantic structures in the spatial domain, which hinders the further improvement of model performance. To alleviate the concern, we propose a cluster-keeping sparse aggregation strategy to preserve the semantic structure of embeddings in deep GNNs (especially for spatial GNNs). Particularly, our strategy heuristically redistributes the extent of aggregations for all the nodes from layers, instead of aggregating them equally, so that it enables aggregate concise yet meaningful information for deep layers. Without any bells and whistles, it can be easily implemented as a plug-and-play structure of GNNs via weighted residual connections. Last, we analyze the over-smoothing issue on the GNNs with weighted residual structures and conduct experiments to demonstrate the performance comparable to the state-of-the-arts.

9.
Children (Basel) ; 11(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38790600

ABSTRACT

This retrospective study aimed to analyze the treatment effect and prognostic factors of pediatric acute myeloid leukemia (AML) patients with t(8;21). A total of 268 newly diagnosed pediatric AML (pAML) enrolled from 1 January 2005 to 31 December 2022 were retrospectively reviewed, and 50 (18.7%) patients harbored t(8;21) translocation. CR rate, OS, EFS, and RFS were assessed by multivariate Logistic and Cox regression models in these patients. Of the 50 patients, 2 patients abandoned treatment during the first induction course. Of the remaining 48 patients who received double-induction therapy and were included in the final analyses, CR1 and CR2 were 75.0% (36/48) and 95.8% (46/48), respectively. The overall three-year OS, EFS, and RFS were 68.4% (95% CI, 55.0-85.1), 64.2% (95% CI, 50.7-81.4), and 65.5% (95% CI, 51.9-82.8), respectively. The presence of loss of sex chromosome (LOS) at diagnosis (n = 21) was associated with a better 3-year OS [87.5% (95% CI, 72.7-100) vs. 52.7% (95% CI, 35.1-79.3), p = 0.0089], 3-year EFS [81.6% (95% CI, 64.7-100) vs. 49.7% (95% CI, 32.4-76.4), p = 0.023], and 3-year RFS [81.6% (95% CI, 64.7-100) vs. 51.7% (95% CI, 33.9-78.9), p = 0.036] than those without LOS (n = 27), and it was also an independent good prognostic factor of OS (HR, 0.08 [95% CI, 0.01-0.48], p = 0.005), EFS (HR, 0.22 [95% CI, 0.05-0.85], p = 0.029), and RFS (HR, 0.21 [95% CI, 0.05-0.90], p = 0.035). However, extramedullary leukemia (EML) featured the independent risk factors of inferior OS (HR, 10.99 [95% CI, 2.08-58.12], p = 0.005), EFS (HR, 4.75 [95% CI, 1.10-20.61], p = 0.037), and RFS (HR, 6.55 [95% CI, 1.40-30.63], p = 0.017) in pediatric individuals with t(8;21) AML. Further analysis of combining LOS with EML indicated that the EML+LOS- subgroup had significantly inferior OS (92.9%, [95% CI, 80.3-100]), EFS (86.2%, [95% CI, 70.0-100]), and RFS (86.2%, [95% CI, 80.3-100]) compared to the other three subgroups (all p < 0.001). LOS and EML are independent prognostic factors of OS, EFS, and RFS with t(8;21) pAML patients. LOS combined with EML may help improve risk stratification.

10.
Clin Cancer Res ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691100

ABSTRACT

PURPOSE: Radiation-mediated immune suppression limits efficacy and is a barrier in cancer therapy. Radiation induces negative regulators of tumor immunity including regulatory T cells (Treg). Mechanisms underlying Treg infiltration after radiotherapy (RT) are poorly defined. Given that dendritic cells (cDC) maintain Treg we sought to identify and target cDC signaling to block Treg infiltration after radiation. EXPERIMENTAL DESIGN: Transcriptomics and high dimensional flow cytometry revealed changes in murine tumor cDC that not only mediate Treg infiltration after RT, but associate with worse survival in human cancer datasets. Antibodies perturbing a cDC-CCL22-Treg axis were tested in syngeneic murine tumors. A prototype interferon-anti-epidermal growth factor receptor fusion protein (αEGFR-IFNα) was examined to block Treg infiltration and promote a CD8+ T cell response after RT. RESULTS: Radiation expands a population of mature cDC1 enriched in immunoregulatory markers that mediates Treg infiltration via the Treg-recruiting chemokine CCL22. Blocking CCL22 or Treg depletion both enhanced RT efficacy. αEGFR-IFNα blocked cDC1 CCL22 production while simultaneously inducing an antitumor CD8+ T cell response to enhance RT efficacy in multiple EGFR-expressing murine tumor models, including following systemic administration. CONCLUSIONS: We identify a previously unappreciated cDC mechanism mediating Treg tumor infiltration after RT. Our findings suggest blocking the cDC1-CCL22-Treg axis augments RT efficacy. αEGFR-IFNα added to RT provided robust antitumor responses better than systemic free interferon administration, and may overcome clinical limitations to interferon therapy. Our findings highlight the complex behavior of cDC after RT and provide novel therapeutic strategies for overcoming RT-driven immunosuppression to improve RT efficacy.

11.
Org Biomol Chem ; 22(21): 4332-4346, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38726656

ABSTRACT

An effective approach for the construction of 4-short-chain ether attached carbonyl group-substituted quinazolines was developed. Visible-light-induced three-component reactions of α-diazoesters, quinazolinones, and cyclic ethers, with a broad substrate scope and excellent functional group tolerance, under extremely mild conditions without the need for any additional additives and catalysts, selectively led to quinazoline-based hybrids in good to excellent yields. The synthesized hybrids, which are a conglomeration of a quinazoline, a short-chain ether, and a carbonyl group in one molecular skeleton, have potential for application in the development of new drugs or drug candidates.

12.
Article in English | MEDLINE | ID: mdl-38783778

ABSTRACT

BACKGROUND: Doxorubicin (DOX) is a potent anti-cancer medication that is associated with numerous adverse effects, particularly concerning damage to the heart. METHODS: This study aimed to investigate the impact of sophocarpine (SOP) on DOX-induced heart injury through both in vivo and in vitro experiments. The experimental techniques employed encompassed echocardiography, hematoxylin/eosin (H&E) staining, Masson staining, immunohistochemical staining, western blotting, and so on. RESULTS: Echocardiography showed that SOP alleviated DOX-induced cardiac dysfunction, as evidenced by the improvements in both left ventricle ejection fraction and left ventricle fractional shortening. DOX caused upregulations of creatine kinase-MB and lactate dehydrogenase, while SOP decreased these indices. Staining methods such as H&E and Masson showed that SOP reversed the pathological changes induced by DOX. DOX elevated the expression levels of fibrosis-associated proteins such as Collagen I, Collagen III, α-SMA, Fibronectin, MMP-2, and MMP-9. However, SOP reversed these changes. Moreover, the study further revealed that SOP inhibited the TGF-ß1/Smad3 signaling pathway. CONCLUSIONS: These findings imply that SOP has the potential to mitigate DOX-induced heart injury by suppressing fibrosis. The underlying molecular mechanism may involve the inhibition of the TGF-ß1/Smad3 signaling pathway.

13.
Cogn Emot ; : 1-18, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738622

ABSTRACT

The brain processes underlying the distinction between emotion-label words (e.g. happy, sad) and emotion-laden words (e.g. successful, failed) remain inconclusive in bilingualism research. The present study aims to directly compare the processing of these two types of emotion words in both the first language (L1) and second language (L2) by recording event-related potentials (ERP) from late Chinese-English bilinguals during a lexical decision task. The results revealed that in the early word processing stages, the N170 emotion effect emerged only for L1 negative emotion-laden words and L2 negative emotion-label words. In addition, larger early posterior negativity (EPN) was elicited by emotion-laden words than emotion-label words in both L1 and L2. In the later processing stages, the N400 emotion effect was evident for L1 emotion words, excluding positive emotion-laden words, while it was absent in L2. Notably, L1 emotion words elicited enhanced N400 and attenuated late positive complex (LPC) compared to those in L2. Taken together, these findings confirmed the engagement of emotion, and highlighted the modulation of emotion word type and valence on word processing in both early and late processing stages. Different neural mechanisms between L1 and L2 in processing written emotion words were elucidated.

14.
Front Psychol ; 15: 1356030, 2024.
Article in English | MEDLINE | ID: mdl-38765838

ABSTRACT

Introduction: In the process of comprehension, linguistic negation induces inhibition of negated scenarios. Numerous studies have highlighted the role of the right Inferior Frontal Gyrus (rIFG) - a key component of the inhibitory network - in negation processing. Social avoidance can be linguistically portrayed using attitudinal verbs such as "exclude" vs. "include", which inherently carry negative connotations. Consequently, we hypothesize that the interplay between explicit negation and the implicit negativity of avoidance verbs can be modulated via transcranial direct current stimulation (tDCS) targeting the rIFG. Methods: In our study, sixty-four participants read approach/avoidance sentences, which were either affirmative or negative, such as "Anne included (did not include) meat in her diet" vs. "Anne excluded (did not exclude) meat in her diet". This reading task followed a 20-minute tDCS session. The sentences were sequentially displayed, and at 1500 ms post-sentence, a verb was shown - either the one previously mentioned or its semantic alternative counterpart (e.g., included vs. excluded). Results: Findings revealed that anodal stimulation intensifies the inhibitory impact of negation during sentence comprehension. Under anodal conditions, negative sentences led to extended reading times for the mentioned verbs compared to their affirmative counterparts, suggesting an increased inhibitory effect on the verb. Furthermore, in avoidance sentences, anodal stimulation resulted in reduced reading times for alternative verbs (e.g. "included") in negative sentences compared to alternative verbs (e.g. "excluded") in negated approach sentences. Discussion: As "avoidance" is semantically equivalent to "non-approach", the inhibitory effect of negation is primarily applied to the implicit negation: NOT EXCLUDED = NOT→NOT (INCLUDED), which consequently activates the representation of the alternative verb making it more available. We further discuss these findings in light of the rIFG's pivotal role in processing attitudinal verbs and linguistic negation. This discussion is framed within the overarching context of the two-step model of negation processing, highlighting its significance in the realm of social communication.

15.
Vaccines (Basel) ; 12(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38793728

ABSTRACT

Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), remains a formidable global health challenge, affecting a substantial portion of the world's population. The current tuberculosis vaccine, bacille Calmette-Guérin (BCG), offers limited protection against pulmonary tuberculosis in adults, underscoring the critical need for innovative vaccination strategies. Cytokines are pivotal in modulating immune responses and have been explored as potential adjuvants to enhance vaccine efficacy. The strategic inclusion of cytokines as adjuvants in tuberculosis vaccines holds significant promise for augmenting vaccine-induced immune responses and strengthening protection against M. tuberculosis. This review delves into promising cytokines, such as Type I interferons (IFNs), Type II IFN, interleukins such as IL-2, IL-7, IL-15, IL-12, and IL-21, alongside the use of a granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant, which has shown effectiveness in boosting immune responses and enhancing vaccine efficacy in tuberculosis models.

16.
J Pain Res ; 17: 1313-1326, 2024.
Article in English | MEDLINE | ID: mdl-38563035

ABSTRACT

Background: Intervertebral disc degeneration (IVDD) is the main cause of low back pain (LBP), but the specific regulatory factors, pathways and specific molecular mechanisms remain unclear. Methods: We identified and quantitatively analyzed Pfirrmann Grade II (n=3) and Pfirrmann Grade IV (n=3) pulposus samples via MRI. The differential abundance of proteins in the samples was determined and quantitatively analyzed by relative and absolute quantitative analysis of the isotope marker levels combined with the liquid chromatography-tandem mass spectrometry (LC‒MSMS/MS). Results: A total of 70 proteins (30 significantly increased proteins (> 1.2-fold change) and 40 significantly decreased proteins (< 0.8-fold change)) showed different levels among the groups. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology (GO) enrichment analyses and Western blot analysis showed that CYCS, RAC1, and PSMD14 may play important roles in IVDD and that Epstein‒Barr virus infection, viral myocarditis, colorectal cancer, nonalcoholic fatty liver disease (NAFLD) and amyotrophic lateral sclerosis (ALS) are the main pathways involved in IVDD. Conclusion: CYCS, RAC1 and PSMD14 may play important roles in IVDD, and Epstein‒Barr virus infection, viral myocarditis, colorectal cancer, NAFLD and ALS may be the main pathways involved in IVDD.

17.
Transplantation ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38597913

ABSTRACT

Although organ transplantation is a life-saving medical procedure, the challenge of posttransplant rejection necessitates safe and effective immune modulation strategies. Nanodelivery approaches may have the potential to overcome the limitations of small-molecule immunosuppressive drugs, achieving efficacious treatment options for transplant tolerance without compromising overall host immunity. This review highlights recent advances in biomaterial-assisted formulations and technologies for targeted nanodrug delivery with transplant organ- or immune cell-level precision for treating graft rejection after transplantation. We provide an overview of the mechanism of transplantation rejection, current clinically approved immunosuppressive drugs, and their relevant limitations. Finally, we discuss the targeting principles and advantages of organ- and immune cell-specific delivery technologies. The development of biomaterial-assisted novel therapeutic strategies holds considerable promise for treating organ rejection and clinical translation.

18.
Front Pharmacol ; 15: 1375110, 2024.
Article in English | MEDLINE | ID: mdl-38645557

ABSTRACT

Introduction: Head and neck cancer is one of the most common tumors worldwide. However, drug resistance in its treatment has become a major factor limiting the efficacy. This study aims to comprehensively understand the current status of research in this field. Methods: The study analyzes papers related to therapeutic resistance in head and neck cancer published between 2000 and 2023 in the Web of Science Core Collection To achieve the research objectives, we searched the WoSCC for research and review papers on therapeutic resistance in head and neck cancer from 2000 to 2023, screened the English literature, and analyzed the research hotspots, academic collaborations, and trends in detail using tools such as Citespace, SCImago Graphica, and VOS viewer. Results: This study summarizes 787 head and neck cancer treatment resistance publications from WoSCC. The analysis showed that China and the United States are the major contributors in this field, and Grandis Jennifer R and Yang Jai-Sing are the key scholars. Keyword analysis showed that "cisplatin resistance" is a continuing focus of attention, while "Metastasis" and "Ferroptosis" may be emerging research hotspots. Literature clustering analysis pointed out that "Ferroptosis", "Immunotherapy" and "ERK signaling" were the recent hotspots that received extensive attention and citations. Finally, we discuss the current status and challenges in drug-resistant therapies for head and neck cancer. Conclusion: This study is the first comprehensive bibliometric analysis of drug resistance in head and neck cancer. Reveals current trends and helps researchers grasp cutting-edge hotspots in the field.

19.
J Pain Res ; 17: 1441-1451, 2024.
Article in English | MEDLINE | ID: mdl-38628430

ABSTRACT

Background: Studies have shown that oral oxycontin tablets can be used for opioid titration. The European Society for Medical Oncology (ESMO) guidelines for adult cancer pain recommend opioid titration through the parenteral route, usually the intravenous or subcutaneous route. Patient-controlled subcutaneous analgesia (PCSA) with hydromorphone needs further evaluation for opioid titration. This prospective multicenter study was designed to compare the efficacy and safety of hydromorphone PCSA with oral oxycontin tablets for opioid titration of cancer pain. Patients and Methods: Eligible patients with cancer pain were randomly assigned in a 1:1 ratio to the PCSA group or the oxycontin group for dose titration. Different titration methods were given in both groups depending on whether the patient had an opioid tolerance. The primary endpoint of this study was time to successful titration (TST). Results: A total of 256 patients completed this study. The PCSA group had a significantly lower TST compared with the oxycontin group (median [95% confidence interval (CI)], 5.5[95% CI:2.5-11.5] hours vs.16.0 [95% CI:11.5-22.5] hours; p<0.001). The frequency (median; interquartile) of breakthrough pain (Btp) over 24 hours was significantly lower in the PCSA group (2.5;2.0-3.5) than in the oxycontin group.(3.0; 2.5-4.5) (p=0.04). The pain was evaluated by numeric rating scale (NRS) score at 12 hours after the start of titration. The pain score (median; interquartile) was significantly lower in the PCSA versus the oxycontin group (2.5;1.5-3.0) vs 4.5;3.0-6.0) (p=0.02). The equivalent dose of oral morphine (EDOM) for a successful titration was similar in both groups (p=0.29), but there was a significant improvement in quality of life (QoL) in both groups (p=0.03). No between-group difference in the incidence of opioid-related adverse effects was observed (p=0.32). Conclusion: Compared with oral oxycontin tablet, the use of PCSA with hydromorphone achieved a shorter titration duration for patients with cancer pain (p<0.001), without significantly increasing adverse events (p=0.32).

20.
Front Oncol ; 14: 1372123, 2024.
Article in English | MEDLINE | ID: mdl-38628666

ABSTRACT

Background: Portal vein tumor thrombus (PVTT) seriously affects the prognosis of hepatocellular carcinoma (HCC). However, whether bile duct tumor thrombus (BDTT) significantly affects the prognosis of HCC as much as PVTT remains unclear. We aimed to compare the long-term surgical outcomes of HCC with macroscopic PVTT (macro-PVTT) and macroscopic BDTT (macro-BDTT). Methods: The data of HCC patients with macro-BDTT or macro-PVTT who underwent hemihepatectomy were retrospectively reviewed. A propensity score matching (PSM) analysis was performed to reduce the baseline imbalance. The recurrence-free survival (RFS) and overall survival (OS) rates were compared between the cohorts. Results: Before PSM, the PVTT group had worse RFS and OS rates than the BDTT group (P = 0.043 and P = 0.008, respectively). Multivariate analyses identified PVTT (hazard ratio [HR] = 1.835, P = 0.016) and large HCC (HR = 1.553, P = 0.039) as independent risk factors for poor OS and RFS, respectively. After PSM, the PVTT group had worse RFS and OS rates than the BDTT group (P = 0.037 and P = 0.004, respectively). The 3- and 5-year OS rates were significantly higher in the BDTT group (59.5% and 52.1%, respectively) than in the PVTT group (33.3% and 20.2%, respectively). Conclusion: Aggressive hemihepatectomy provides an acceptable prognosis for HCC patients with macro-BDTT. Furthermore, the long-term surgical outcomes of HCC patients with macro-BDTT were significantly better than those of HCC patients with macro-PVTT.

SELECTION OF CITATIONS
SEARCH DETAIL
...