Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 68(8): 3068-77, 2003 Apr 18.
Article in English | MEDLINE | ID: mdl-12688774

ABSTRACT

The Diels-Alder reaction rate constants of methyl vinyl ketone with cyclopentadiene and cyclohexadiene in the presence of a novel organotungsten catalyst, [P(2-py)(3)W(CO)(NO)(2)](2+), have been measured experimentally and modeled theoretically at several temperatures. The uncatalyzed systems were also studied for direct comparison. When 0.0022 M of catalyst is present at room temperature, the rate constants were found to be approximately 5.3 and 5300 times higher than the corresponding uncatalyzed reactions for cyclopentadiene and cyclohexadiene systems, respectively. Experimental data suggested that the catalyst reduced the activation energies by 5-10 kcal/mol. However, the preexponential factors showed reduction of more than 3 orders of magnitude upon catalysis due to the entropic effects. The energy barriers and the rate constants of the uncatalyzed systems were accurately modeled by correlated electronic structure and dual-level variational transition state theory calculation. The calculated endo selectivity is in good agreement with the observed product distribution. Theoretical calculation also suggested the catalyzed reactions proceeded in a highly asynchronous or even stepwise fashion.

SELECTION OF CITATIONS
SEARCH DETAIL
...