Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(11): 4890-4899, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38436475

ABSTRACT

Out of the high number of photocatalytic applications, CO2 reduction has proved to be quite a boon for the present world. Increasing CO2 emissions owing to fossil fuel usage has been a menace to our society. To date, many methods have been developed to redress the situation. One of them is photocatalysis, which has been a well-known branch of energy and environmental applications since 1972. This is due to its low energy consumption and green nature. In recent years, a new phenomenon has come into existence wherein a combination of mechanical energy and photocatalysis can increase the efficiency of any catalytic process. In this regard, this frontier article will discuss the recent developments in piezo-photocatalysis for CO2 reduction. The main focus will be understanding the underlying mechanisms of efficiency enhancements in photocatalytic systems. Initially, the mechanism of CO2 reduction and its current needs will be discussed in the introduction. Further, a collection of recent reports from the literature and various material systems will be discussed to gain insights into the latest developments in the area. Then, literature and references that are purely mechanism-based with deeper analysis will be discussed, along with crucial characterization techniques for piezo-photocatalysts. Many factors need to be factored in for a better understanding of piezo-photocatalysis, e.g., factors such as piezo energy source, material design, and CO2 adsorption, require more attention to increase the CO2 reduction capability of photocatalysts. Based on the discussions in this article, researchers will gain new perceptions on the combination of vibrational energy and light energy to enhance CO2 reduction yields. Moreover, this article can advance understanding of techniques such as Kelvin probe microscopy, the requirement of simulation studies, and CO2 reduction mechanisms to better understand the piezo behavior of materials and ways to improve them for maximum product yield.

2.
ACS Appl Mater Interfaces ; 16(10): 12407-12416, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38419190

ABSTRACT

Hydrogen-based energy systems hold promise for sustainable development and carbon neutrality, minimizing environmental impact with electrolysis as the preferred fossil-fuel-free hydrogen generation method. Effective electrocatalysts are required to reduce energy consumption and improve kinetics, given the need for additional voltage (overpotential, η) despite the theoretical water splitting potential of 1.23 V. To date, platinum has been acknowledged as the most effective but expensive hydrogen evolution reaction (HER) catalyst. Hence, we introduce a cost-effective (∼2-fold cheaper) ruthenium-modified tungsten diphosphide (Ru/WP2) catalyst on carbon fiber for HER in ∼0.5 M H2SO4, with η ≈ 34 mV at -10 mA cm-2 which can be comparable (only ∼2-fold higher) to benchmark Pt/C (η ≈ 17 mV). The HER performance of WP2 can be enhanced through the modification of ruthenium, as indicated by the electrochemical characterizations. Considering the Tafel value of ∼40 ± 0.2 mV dec-1, it can be inferred that Ru/WP2 follows the Volmer-Heyrovsky reaction pathway for hydrogen generation. Furthermore, the Faradaic efficiency estimation indicates that Ru/WP2 demonstrates a minimal loss of electrons during the electrochemical reaction with an estimated value of ∼98.7 ± 1.4%. Therefore, this study could emphasize the potential of the Ru/WP2 electrode in advancing sustainable hydrogen production through water splitting.

3.
Chemphyschem ; 25(8): e202300924, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38366133

ABSTRACT

Electrolysis is a trend in producing hydrogen as a fuel for renewable energy development, and urea electrolysis is considered as one of the advanced electrolysis processes, where efficient materials still need to be explored. Notably, urea electrolysis came into existence to counter-part the electrode reactions in water electrolysis, which has hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Among those reactions, OER is sluggish and limits water splitting. Hence, urea electrolysis emerged with urea oxidation reaction (UOR) and HER as their reactions to tackle the water electrolysis. Among the explored materials, noble-metal catalysts are efficient, but their cost and scarcity limit the scaling-up of the Urea electrolysis. Hence, current challenges must be addressed, and novel efficient electrocatalysts are to be implemented to commercialize urea electrolysis technology. Phosphides, as an efficient UOR electrocatalyst, have gained huge attention due to their exceptional lattice structure geometry. The phosphide group benefits the water molecule adsorption and water dissociation, and facilitates the oxyhydrate of the metal site. This review summarizes recent trends in phosphide-based electrocatalysts for urea electrolysis, discusses synthesis strategies and crystal structure relationship with catalytic activity, and presents the challenges of phosphide electrocatalysts in urea electrolysis.

4.
Environ Res ; 241: 117656, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37980987

ABSTRACT

The topic of photocatalysis and CuxO-based materials has been intertwined for quite a long time. Its relatively high abundance in the earth's crust makes it an important target for researchers around the globe. One of the properties exploited by researchers is its ability to exist in different oxidation states (Cu0, Cu+, Cu2+, and Cu3+) and its implications on photocatalytic efficiency improvement. Recently, they have been extensively used as photocatalytic materials for dye and pollutant degradation. However, it has almost reached saturation levels, therefore, currently, they are being mostly utilized for CO2 reduction and H2 evolution. Hence, this review will discuss the evolution (in application) of CuxO-based photocatalysts, relating to their past, present, and future. Moreover, photocatalytic efficiency improvement strategies such as doping, heterojunction formation, and carbonaceous construction with other materials will also be touched upon. Finally, the prospect of Cu2O-based photocatalysts will be discussed in the field of photocatalytic N2 fixation to ammonia. The significance of N2 chemisorption on photocatalysts to maximize ammonia production will also be given importance.


Subject(s)
Ammonia , Environmental Pollutants , Carbon Dioxide , Nitrogen Fixation
5.
Chemistry ; 29(68): e202302559, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37806958

ABSTRACT

The field of photocatalysis has been evolving since 1972 since Honda and Fujishima's initial push for using light as an energy source to accomplish redox reactions. Since then, many photocatalysts have been studied, semiconductors or otherwise. A new photocatalytic application to convert N2 gas to ammonia (N2 fixation or nitrogen reduction reaction; NRR) has emerged. Many researchers have steered their research in this direction due to developments in the ease of ammonia detection through UV-Vis spectroscopy. This concept will specifically discuss Bi2 WO6 -based materials, techniques to enhance their photocatalytic activity (CO2 reduction, H2 production, pollutant removal, etc.), and their current application in photocatalytic NRR. Initially, a brief introduction of Bi2 WO6 along with its VB and CB potentials will be compared to various redox potentials. A final topic of interest would be a brief description of photocatalytic nitrogen fixation with additional consideration to Bi2 WO6 -based materials in N2 fixation. A major problem with photocatalytic NRR is the false ammonia quantification in Bi-based materials, which will be discussed in detail and also ways to minimize them.

6.
ACS Appl Mater Interfaces ; 15(31): 37540-37553, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37486794

ABSTRACT

Photocatalytic N2 fixation is a complex reaction, thereby prompting researchers to design and analyze highly efficient materials. Herein, one-pot hydrothermal Bi2WO6-BiOCl (BW-BiOCl) heterojunctions were synthesized by varying the molar ratio of tungsten: chlorine precursor. Major morphological transformations in BiOCl were observed wherein it turned from thick sheets ∼230 nm in pure BiOCl to ∼30 nm in BW-BiOCl. This was accompanied by extensive growth of {001} facets verified from X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) analyses. A p-n heterojunction was formed between Bi2WO6 and BiOCl evidenced via photoluminescence (PL), time-resolved photoluminescence (TRPL), photocurrent response, and electrochemical impedance spectroscopy (EIS) analyses. The formation of heterojunction between Bi2WO6 and BiOCl led to the reduction of the work function in the BW-BiOCl 0.25 hybrid confirmed via ultraviolet photoelectron spectroscopy (UPS) analysis. BW-BiOCl 0.25 could produce ammonia up to 345.1 µmol·L-1·h-1 owing to the formation of a robust heterojunction with an S-scheme carrier transport mechanism. Recycle tests resulted in no loss in N2 reduction activities with post-catalytic analysis, showcasing the high stability of the synthesized heterojunction. Novel performance was owed to its excellent chemisorption of N2 gas on the heterojunction surface verified by N2-temperature programmed desorption (TPD). BW-BiOCl 0.25 also displayed a superior rate constant of 3.03 × 10-2 min-1 for 90 min CIP degradation time, higher than pristine BiOCl and Bi2WO6. Post-photocatalytic Fourier transform infrared (FTIR) spectroscopy of BW-BiOCl 0.25 revealed the presence of C-H stretching peaks in the range of 2850-2960 cm-1 due to adsorbed CIP and methanol species in CIP degradation and N2 fixation, respectively. This also confirmed the enhanced adsorption of reacting species onto the heterojunction surface.

7.
Chemistry ; 29(54): e202301872, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37395144

ABSTRACT

To overcome the sluggishness of the oxygen evolution reaction (OER), the urea oxidation reaction was developed. In the case of OER application studies ZnCo2 O4 is an excellent electrocatalyst, towards the UOR has been performed with surface-grown polydopamine (PDA) with surface-grown polydopamine (PDA). ZnCo2 O4 @PDA is produced over the surface of nickel foam by a hydrothermal method followed by self-polymerization of dopamine hydrochloride. Dopamine hydrochloride was varied in solution to study the optimal growth of PDA necessary to enhance the electrochemical activity. Prepared ZnCo2 O4 @PDA was characterized by X-ray diffraction, electronic structural, and morphology/microstructure studies. With successful confirmation, the developed electrode material was applied to UOR and ZnCo2 O4 @PDA-1.5, delivering an excellent low overpotential of 80 mV at 20 mA cm-2 in the electrolyte mixture of 1 M potassium hydroxide+0.33 M urea. To support the excellent UOR activity, other electrochemical properties such as the Tafel slope, electrochemical surface active sites, and electrochemical impedance spectroscopy were also studied. Furthermore, a schematic illustration explaining the UOR mechanism is shown to allow a clear understanding of the obtained electrochemical activity. Finally, urea water electrolysis was carried out in a two-electrode symmetrical cell and compared with water electrolysis. This clearly showed the potential of the developed material for efficient electrochemical hydrogen production.

8.
Chemosphere ; 310: 136847, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36241103

ABSTRACT

Deep eutectic solvents (DES) consisting of EG-(ChCl: C2H6O2) and TU-(ChCl: CH4N2S) assisted synthesized BiOCl/BiVO4 heterostructured catalyst studied for electrochemical uric acid (UA) sensor and tetracycline photocatalytic degradation. The chemical composition of the BiOCl/BiVO4 catalyst was analyzed by X-ray photoelectron spectroscopy (XPS). UV-vis spectroscopy reveals increased absorption of visible light till the near-infrared region, which results in a narrowing of band gap energy from 2.3 eV to 2.2 eV for BiOCl/BiVO4-TU. Morphology of catalyst analyzed using field-emission scanning electron microscope (FE-SEM) and Transmission electron microscope (TEM) technique. Time-Resolved photoluminescence (TRPL) confirms an increased lifetime of e-/h+ pair after heterostructure formation. The catalyst-modified glassy carbon electrode shows selectivity toward the detection of uric acid (UA). The limit of detection (LOD) is estimated to be 0.04688 µM for UA; also, interference and stability of catalyst were studied. Photocatalytic activity of the synthesized catalyst was investigated by degrading tetracycline (TC) antibiotic pollutants, and their intermediate product was analyzed by ion trap mass spectrometry (MS).


Subject(s)
Bismuth , Uric Acid , Bismuth/chemistry , Catalysis , Tetracycline/chemistry , Anti-Bacterial Agents/chemistry
9.
Chemosphere ; 283: 131182, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34153923

ABSTRACT

Ciprofloxacin (CIP) is a fluoroquinolone family antibiotic pollutant. CIP existence in water environment has been rising very fast in day-to-day life and subsequently, it gives enormous health issues for humans because of its potent biological activity. To encounter this, current researchers are focusing on the development of highly efficient visible light semiconductor nanocomposites with potential photocatalytic activity. In the present work, we have successfully synthesized highly efficient zinc-aluminum layered double hydroxides with graphitic carbon nitride (ZALDH/CN) composites via a simple microwave irradiation method first time for the degradation of CIP under visible light. The fabricated materials are subsequently characterized by various spectroscopic techniques. UV-Vis DRS, TRFL, XRD, FT-IR, BET, FE-SEM, TEM, and XPS for optical, crystal structure, morphological, and elemental analysis. The main reactive intermediates which are formed during the photocatalytic degradation process were analyzed by LC-MS analysis. It is worth to note that, the optimized ZALDH/CN-10 composite showed the highest photo-degradation rate constant of 1.22 × 10-2 min-1 with 84.10% degradation is higher than bare CN and ZALDH photocatalysts. Based on the electron-hole pair trapping experiment results, possible CIP photo-degradation mechanism was also explained in the present study. With all results, this work demonstrates the ZALDH/CN composite materials showed a high synergistic effect with more specific surface area. Highest specific surface area leads to enhanced visible light adsorption capacity. Subsequently improved number of catalytically active sites. Furthermore, as compared with pure materials, composites of ZALDH/CN are having low electron-hole pair recombination. Consequently, the composites ZALDH/CN showed superior photocatalytic activity for antibiotic pollutant CIP degradation under visible-light illumination.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Catalysis , Humans , Light , Lighting , Microwaves , Spectroscopy, Fourier Transform Infrared
10.
Dalton Trans ; 49(25): 8516-8527, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32525193

ABSTRACT

Nickel-doped FeS2/rGO composites were synthesized as multifunctional materials via a facile hydrothermal method. The synthesized materials were characterized with XRD, FESEM, XPS, and TEM-SAED for structural, morphological and chemical studies. To study their electrochemical properties, all the synthesized composites were subjected to cyclic voltammetry tests. The optimum composite revealed high catalytic activity with high peak current density, limiting current, and efficiency of 7.60% for DSSC, which surpassed that of a platinum-based counter electrode (6.69%). The efficiency of the DSSC was significantly supported by interfacial studies and electron lifetime studies, and it exhibited lower charge transfer resistance and higher electron lifetime, respectively. Moreover, the fabricated DSSCs with high efficiency were subjected to transient photo-response studies and showed a stable current response with multiple photo-ON and OFF cycles for a period of 600 s. To broaden the application of the synthesized material, it was used as an electrochemical sensor for the efficient sensing of hydrogen peroxide (H2O2). The sensing electrode was modified with the optimum Ni-doped FeS2/rGO composite, and voltammetric detection was carried out in the hydrogen peroxide concentration range of 4-100 µM. Thus, the synthesized material can be applied in DSSCs and as an electrochemical H2O2 sensor.

11.
ChemSusChem ; 13(10): 2726-2738, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32103631

ABSTRACT

Hierarchical nano-/microstructured photocatalysts have drawn attention for enhanced photocatalytic performance. Deep eutectic solvents (DESs) have been used as a green sustainable media to act as both solvent and structure-inducing agent in the synthesis of hierarchical nanomaterials. In this work, the DESs-assisted synthesis of flower-structured BiOCl/BiVO4 (BOC/BVO) with g-C3 N4 (BOC/BVO/g-CN) ternary heterojunctions was achieved by using a simple wet-chemical method, providing good acidic and alkaline oxygen evolution reaction (OER) catalysts. BOC/BVO/g-CN-15 achieved an enhanced photocatalytic activity for OER with an overpotential of 570 mV in 1 m H2 SO4 and 220 mV in 1 m KOH electrolyte at a current density of 10 mA cm-2 with excellent stability and extraordinary durability of the catalyst. The ternary heterojunctions displayed extended lifetimes for photogenerated charges and enhanced the separation efficiency of photogenerated electron-hole pairs, which is helpful to enhance the photocatalytic OER. Furthermore, the photocatalytic performance of the ternary heterojunctions in aqueous solution was demonstrated through photocatalytic dye degradation of methyl orange (MO) as a model pollutant, resulting in 95 % degradation of 20 ppm of MO in 210 min under the irradiation of a 35 W Xe arc lamp. This work not only provides new insight into the design of catalysts by using green solvents but also into the design of highly efficient metal-free OER photocatalysts for applications in acidic and alkaline media.

12.
Dalton Trans ; 49(3): 625-637, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31859301

ABSTRACT

The immense need to build highly efficient catalysts has always been at the forefront of environmental remediation research. Herein, we have synthesized dual-phase copper oxide containing Cu2O and CuO originating from the same reaction using hexamethyltetramine (HMT). Simultaneously, we coupled it with g-C3N4 (g-CN), constructing a triple synergetic heterojunction, which is reported significantly less often in the literature. Hydrothermal reactions led to the formation of various catalysts, namely, Ag-Cu2O-CuO-gCN (ACCG), Ag-CuO-gCN (ACG), Ag-Cu2O-CuO (ACC) and Ag-CuO (AC), which were thoroughly characterized via XRD and FESEM to gain structural, crystallographic and morphological insights. We clearly observed the pure phase formation of the catalysts and the development of sheet-like CuO and truncated octahedrons of Cu2O fused together within the g-CN framework. Also, XPS studies revealed the presence of copper in two different oxidation states, namely, Cu2+ and Cu+. BET analysis was performed to analyze the surface area and pore volume of the catalysts, which play very significant roles in catalytic reduction. The catalytic efficiencies of the catalysts were evaluated via the reduction of 100 ppm 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) without using any light irradiation. The most efficient catalyst was ACCG, revealing the reduction of 4-NP in 4 minutes. Both Cu2O and g-CN played significant roles in reduction, following zero-order kinetics, unlike that which is often reported in the literature. We also evaluated the catalytic reduction with different concentrations of 4-NP and tuning the catalyst amount as well. A mechanism was postulated based on the XRD results of the post-catalytic reduction catalyst. The ACCG catalyst was also successfully tested as an effective dopamine sensor. The GC/ACCG electrode exhibited oxidation peak current density of 0.28 mA cm-2, which was much higher than those of the other catalysts. This unique combination of pure phase materials to form a composite as an effective catalyst as well as a sensor is an exclusive effort towards environmental remediation.


Subject(s)
Dopamine/analysis , Graphite/chemistry , Nitrogen Compounds/chemistry , Nitrophenols/chemistry , Silver/chemistry , Biosensing Techniques , Catalysis , Copper/chemistry , Electrochemical Techniques , Models, Molecular , Nitriles/chemistry , Oxidation-Reduction
13.
Dalton Trans ; 48(27): 10235-10250, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31197292

ABSTRACT

Effective exploitation of visible-light unique structural and electronic properties has enormously attracted more researchers for photocatalytic systems. Here, we have fabricated an efficient Bi2WO6-Ag plasmonic hybrid via the photoreduction technique and the obtained materials were well characterized with sophisticated instruments. The BW-Ag-1 catalyst showed the maximum photocatalytic activity for the degradation of cationic dyes rhodamine B (RhB) and malachite green (MG) and the rate constant was 2.6 × 10-2 min-1 and 1.6 × 10-2 min-1 respectively, which is the highest among the synthesized catalysts. The enhanced photocatalytic activity could be ascribed to the synergistic effect of surface plasmon resonance caused by Ag NPs, which could enhance the photoabsorption capability, photon scattering, and plasmon resonance energy transfer, and plasmon-induced hot electron transfer (PHET) ensures better photocatalytic performance. In addition, we have evaluated the influence of Ag on Bi2WO6 microspheres with crystallographic and morphological studies, which depict a negligible change in the crystal structure and an increase in the Ag (FCC) phase with an increase in AgNO3 content and the FE-SEM and mapping images disclose the uniform dispersion of Ag on the surface of Bi2WO6. Trapping experiments revealed that the active species for the degradation of MG were superoxide (˙O2-) radicals as the major reactive species with holes being the main instigative species, which are effectively involved in the photo-induced catalytic reaction. Furthermore, we have studied the effect of different pH of MG initial solution and the plasmonic hybrid catalyst depicted high stability and durability even after five successive cycles. In the electrochemical study, the BW-Ag-1 modified glassy carbon electrode (GCE) demonstrated a superior current density due to the redox behavior and smaller resistance revealing the addition of Ag NPs to be beneficial for the catalytic performance.

14.
Dalton Trans ; 48(24): 8594-8610, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-30994137

ABSTRACT

Anion doping into the oxygen site as a new plan for tuning the physical and chemical properties of metal oxides and adjusting their catalytic behavior has been studied. Herein, we report a Cl- anion-doped CuO (Cl-CuO) preparation method using deep eutectic solvents (DESs) as a green solvent, and the Cl-CuO/g-C3N4 heterostructure was successfully prepared in various weight ratios via a simple ultrasonication and mixing method for the oxygen evolution reaction (OER) in acidic media and the photocatalytic degradation of 4-nitrophenol. Cl- was doped into the CuO crystal lattice, as revealed by the XRD and XPS studies. The as-prepared Cl-CuO/g-C3N4 (1 : 2) exhibited a low overpotential of 0.77 V on the glassy carbon electrode with a current density of 33 mA cm-2 at 2.4 V for OER in an acidic solution. Also, about 92% degradation of 20 ppm of 4-nitrophenol was achieved for Cl-CuO/g-C3N4 (1 : 2) in 100 minutes under the irradiation of a 35 W Xe arc lamp. We also evaluated the effect of thermal energy on degradation kinetics by tuning the temperature, which led us to the quantification of various thermodynamic parameters. To the best of knowledge, this is one of the new methods of green synthesis to fabricate photocatalysts for energy and environmental studies.

15.
Nanomaterials (Basel) ; 9(3)2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30841586

ABSTRACT

The interfacial interactions between ionic liquids (1,3-dimethylimidazolium methyl sulfate and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate) and solid surfaces (mesoporous aluminum oxide and mica) have been studied by infrared spectroscopy at high pressures (up to 2.5 GPa). Under ambient pressure, the spectroscopic features of pure ionic liquids and mixtures of ionic liquids/solid particles (Al2O3 and mica) are similar. As the pressure is increased, the cooperative effect in the local structure of pure 1,3-dimethylimidazolium methyl sulfate becomes significantly enhanced as the imidazolium C⁻H absorptions of the ionic liquid are red-shifted. However, this pressure-enhanced effect is reduced by adding the solid particles (Al2O3 and mica) to 1,3-dimethylimidazolium methyl sulfate. Although high-pressure IR can detect the interactions between 1,3-dimethylimidazolium methyl sulfate and particle surfaces, the difference in the interfacial interactions in the mixtures of Al2O3 and mica is not clear. By changing the type of ionic liquid to 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, the interfacial interactions become more sensitive to the type of solid surfaces. The mica particles in the mixture perturb the local structure of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate under high pressures, forcing 1-ethyl-3-methylimidazolium trifluoromethanesulfonate to form into an isolated structure. For Al2O3, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate tends to form an associated structure under high pressures.

16.
J Hazard Mater ; 367: 647-657, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30654282

ABSTRACT

Heterostructured nanomaterials can paid more significant attention in environmental safety for the detection and degradation/removal of hazardous toxic chemicals over a decay. Here, we report the preparation of hierarchically nanostructured shuriken like bismuth vanadate (BiVO4) as a bifunctional catalyst for photocatalytic degradation and electrochemical detection of highly toxic hexavalent chromium (Cr(VI)) using the green deep eutectic solvent reline, which allows morphology control in one of the less energy-intensive routes. The SEM results showed a good dispersion of BiVO4 catalyst and the HR-TEM revealed an average particle size of ca. 5-10 nm. As a result, the BiVO4 exhibited good photocatalytic activity under UV-light about 95% reduction of Cr(VI) to Cr(III) was observed in 160 min. The recyclability of BiVO4 catalyst exhibited an appreciable reusability and stability of the catalyst towards the photocatalytic reduction of Cr(VI). Also, the BiVO4-modified screen printed carbon electrode (BiVO4/SPCE) displayed an excellent electrochemical performance towards the electrochemical detection of Cr(VI). Besides, the BiVO4/SPCE demonstrated tremendous electrocatalytic activity, lower linear range (0.01-264.5 µM), detection limit (0.0035 µM) and good storage stability towards the detection of Cr(VI). Importantly, the BiVO4 modified electrode was also found to be a good recovery in water samples for practical applications.

17.
RSC Adv ; 8(12): 6488-6501, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-35540418

ABSTRACT

Graphene oxide-based composites have been developed as cheap and effective photocatalysts for dye degradation and water splitting applications. Herein, we report reduced graphene oxide (rGO)/Ag/Fe-doped TiO2 that has been successfully prepared using a simple process. The resulting composites were characterized by a wide range of physicochemical techniques. The photocatalytic activities of the composite materials were studied under visible light supplied by a 35 W Xe arc lamp. The rGO/Ag/Fe-doped TiO2 composite demonstrated excellent degradation of methylene blue (MB) in 150 min and 4-nitrophenol (4-NP) in 210 min under visible light irradiation, and trapping experiments were carried out to explain the mechanism of photocatalytic activity. Moreover, electrochemical studies were carried out to demonstrate the oxygen evolution reaction (OER) activity on rGO/Ag/Fe-doped TiO2 in 1 M of H2SO4 electrolyte, with a scan rate of 50 mV s-1. The reductions in overpotential are due to the d-orbital splitting in Fe-doped TiO2 and rGO as an electron collector and transporter.

18.
Water Environ Res ; 87(10): 1312-59, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26420090

ABSTRACT

This review of literature published in 2014 focuses on waste related to chemical and allied products. The topics cover the waste management practices, hospital waste, pesticide waste, chemical wastewater, pesticide wastewater and pharmaceutical wastewater. The other topics include aerobic treatment, anaerobic treatment, sorption and ozonation.

19.
J Air Waste Manag Assoc ; 62(2): 262-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22442942

ABSTRACT

This study focuses on artificial lightweight aggregates (ALWAs) formed from sewage sludge and ash at lowered co-melting temperatures using boric acid as the fluxing agent. The weight percentages of boric acid in the conditioned mixtures of sludge and ash were 13% and 22%, respectively. The ALWA derived from sewage sludge was synthesized under the following conditions: preheating at 400 degrees C 0.5 hr and a sintering temperature of 850 degrees C 1 hr. The analytical results of water adsorption, bulk density, apparent porosity, and compressive strength were 3.88%, 1.05 g/cm3, 3.93%, and 29.7 MPa, respectively. Scanning electron microscope (SEM) images of the ALWA show that the trends in water adsorption and apparent porosity were opposite to those of bulk density. This was due to the inner pores being sealed off by lower-melting-point material at the aggregates'surface. In the case of ash-derived aggregates, water adsorption, bulk density, apparent porosity, and compressive strength were 0.82%, 0.91 g/cm3, 0.82%, and 28.0 MPa, respectively. Both the sludge- and ash-derived aggregates meet the legal standards for ignition loss and soundness in Taiwan for construction or heat insulation materials.


Subject(s)
Boric Acids/chemistry , Sewage/chemistry , Compressive Strength , Hot Temperature , Materials Testing , Microscopy, Electron, Scanning , Particle Size , Recycling
20.
J Air Waste Manag Assoc ; 62(12): 1449-58, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23362764

ABSTRACT

Stone processing sludge (SPS) is a by-product of stone-processing wastewater treatment; it is suitable for use as a raw material for making artificial lightweight aggregates (ALWAs). In this study, boric acid was utilized as a flux to lower sintering temperature. The formation of the viscous glassy phase was observed by DTA curve and changes in XRD patterns. Experiments were conducted to find the optimal combination of sintering temperature, sintering time, and boric acid dosage to produce an ALWA of favorable characteristics in terms of water absorption, bulk density, apparent porosity, compressive strength and weight loss to satisfy Taiwan's regulatory requirements for construction and insulation materials. Optimal results gave a sintering temperature of 850 degrees C for 15 min at a boric acid dosage of 15% by weight of SPS. Results for ALWA favorable characteristics were: 0.21% (water absorption), 0.35% (apparent porosity), 1.67 g/cm3 (bulk density), 66.94 MPa (compressive strength), and less than 0.1% (weight loss).


Subject(s)
Industrial Waste/analysis , Recycling/methods , Sewage/chemistry , Waste Disposal, Fluid/methods , Construction Materials , Hot Temperature , Mechanics , Microscopy, Electron, Scanning , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...