Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 214: 114514, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35780536

ABSTRACT

This work presents a novel signal amplification strategy for electrochemiluminescence (ECL) biosensor based on liposome-assisted chemical redox cycling for in situ formation of Au nanoparticles (Au NPs) on TiO2 nanotubes (TiO2 NTs) electrode. The system was exemplified by ascorbic acid (AA)-loaded liposome, the redox cycling of AA utilizing tris (2-carboxyethyl) phosphine (TCEP) as reductant, and the use of Au nanoclusters (Au NCs)/TiO2 NTs as working electrode to implement the ECL detection of prostate specific antigen (PSA). Specifically, the AA-loaded liposomes were used as tags to label the captured PSA through a sandwich immunoreaction. After the lysate of the liposome was transferred onto the interface of Au NCs/TiO2 NTs in the presence of Au3+ and TECP, the chemical redox cycling was triggered. In the cycling, Au3+ was directly reduced in situ by AA to form Au NPs on Au NCs/TiO2 NTs electrode, whereas the oxidation product of AA was reduced by TCEP to regenerate AA. The large loading capacity of the liposome and chemical redox cycling resulted in the incomplete reduction of the Au NCs to Au NPs on the TiO2 NTs electrode, enhancing the ECL intensity greatly. The multiple signal amplification strategy achieved an ultrasensitive detection for PSA with a detection limit down to 6.7 × 10-15 g mL-1 and a wide linear concentration range from 1.0 × 10-14 to 1.0 × 10-8 g mL-1. It is believed that this work is anticipated to extend the employment of advanced chemical redox cycling reaction in the field of ECL bioassays.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Biosensing Techniques/methods , Electrochemical Techniques/methods , Gold , Humans , Immunoassay , Limit of Detection , Liposomes , Male , Oxidation-Reduction , Prostate-Specific Antigen
2.
Analyst ; 147(2): 247-251, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34931211

ABSTRACT

Herein, a novel and facile dual-wavelength ratiometric electrochemiluminescence-resonance energy transfer (ECL-RET) sensor for hydrogen sulfide (H2S) detection was constructed based on the interaction between S2- and Cd2+-doped g-C3N4 nanosheets (NSs). Cd2+-doped g-C3N4 NSs exhibited a strong ECL emission at 435 nm. In the presence of H2S, CdS was formed in situ on g-C3N4 NSs by the adsorption of S2- and Cd2+, generating another ECL emission at 515 nm. Furthermore, the overlapping of the absorption spectrum of the formed CdS and the ECL emission spectrum of g-C3N4 NSs led to a feasible RET, thus quenching the ECL intensity from g-C3N4 at 435 nm. Through an ECL decrease at 435 nm and an increase at 515 nm, a dual-wavelength ratiometric ECL-RET system for H2S was designed. The sensor exhibited a lower detection limit of 0.02 µM with a wide linear range of 0.05-100.0 µM. In addition, the applicability of the method was validated by plasma sample analysis with a linear range of 80.0-106.0%. We believe that such a proposal would provide new insight into advanced dual-wavelength ECL ratiometric assays.


Subject(s)
Biosensing Techniques , Hydrogen Sulfide , Cadmium , Electrochemical Techniques , Limit of Detection , Luminescent Measurements
3.
Analyst ; 146(12): 3918-3923, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-33973589

ABSTRACT

Developing an efficient signal amplification strategy is very important to improve the sensitivity of bioanalysis. In this paper, a liposome-assisted enzyme catalysis signal amplification strategy was developed for electrochemiluminescence (ECL) immunoassay of prostate specific antigen (PSA) in a split-type mode. The sandwich immunoreaction occurred in a 96-well plate, and glucose oxidase (GOx) encapsulated and antibody-modified liposomes were used as labels. The ECL detection was carried out using a rGO-Au NP modified glassy carbon electrode (GCE). The large amount of generated H2O2, i.e. the coreactant of the luminol system, and the excellent catalytic behavior of rGO-Au NPs greatly boosted the ECL signal, resulting in the signal amplification. The developed ECL immunosensor for detecting PSA achieved a wider linear range from 1.0 × 10-13 to 1.0 × 10-8 g mL-1 and a detection limit of 1.7 × 10-14 g mL-1. The application of the proposed strategy was demonstrated by analyzing PSA in human serum samples with recoveries from 89.0% to 113.0%, and relative standard deviations (RSDs) were less than 6.6%. This work provides a new horizon to expand the application of liposomes for ECL bioanalysis.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Catalysis , Electrochemical Techniques , Gold , Humans , Hydrogen Peroxide , Immunoassay , Limit of Detection , Liposomes , Luminescent Measurements , Male
4.
Biosens Bioelectron ; 171: 112729, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33113387

ABSTRACT

A novel chemiluminescence (CL) imaging platform was constructed for prostate specific antigen (PSA) detection in a multiple signal amplifying manner. To construct the platform, the primary antibody for PSA was firstly immobilized on a O-ring area of a glass slide for recognizing the PSA. The horseradish peroxidase (HRP) and the secondary antibody of PSA (Ab2) functionalized Au NPs (HRP-Au NPs-Ab2) were modified on the platform through immunoreaction between PSA and Ab2. The excellent catalytic effect of Au NPs and HRP on the HRP-Au NPs-Ab2 to the luminol-H2O2 CL system provided the dual-signal amplification for PSA detection. To further enhance the sensitivity, tyramine signal amplification (TSA) strategy was introduced: tyramine-HRP conjugates were added into the O-ring reservoir and thus tyramine-HRP repeats formed in the presence of H2O2, generating a multiple signal amplification because of the large amounts of HRP on the sensing interface. The excellent performance of HRP-Au NPs-Ab2 and TSA strategy endows the CL platform with high sensitivity. The PSA was detected with a photomultiplier tube (PMT) and visually analyzed by a charge coupled device (CCD), respectively. The linear ranges of PMT and CCD for PSA are 0.1-100.0 ng mL-1 with a detection limit of 0.05 pg mL-1 and 0.5 - 100.0 ng mL-1 with a detection limit of 0.1 pg mL-1, respectively. The levels of PSA in several human serum samples were determined and the recoveries are ranged from 82.5% - 117.0%. This CL immunosensing platform holds great potential for bioactive molecules detection visually and sensitively.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Electrochemical Techniques , Gold , Humans , Hydrogen Peroxide , Immunoassay , Limit of Detection , Luminescence , Male , Prostate-Specific Antigen
SELECTION OF CITATIONS
SEARCH DETAIL
...