Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(17): e202316551, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38411372

ABSTRACT

Single-entity electrochemistry is a powerful tool that enables the study of electrochemical processes at interfaces and provides insights into the intrinsic chemical and structural heterogeneities of individual entities. Signal processing is a critical aspect of single-entity electrochemical measurements and can be used for data recognition, classification, and interpretation. In this review, we summarize the recent five-year advances in signal processing techniques for single-entity electrochemistry and highlight their importance in obtaining high-quality data and extracting effective features from electrochemical signals, which are generally applicable in single-entity electrochemistry. Moreover, we shed light on electrochemical noise analysis to obtain single-molecule frequency fingerprint spectra that can provide rich information about the ion networks at the interface. By incorporating advanced data analysis tools and artificial intelligence algorithms, single-entity electrochemical measurements would revolutionize the field of single-entity analysis, leading to new fundamental discoveries.

2.
Front Nutr ; 9: 890942, 2022.
Article in English | MEDLINE | ID: mdl-35685875

ABSTRACT

In this study, phycocyanin-sodium alginate/lysozyme complex (PC-SLC) was prepared for the first time and characterized by UV spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and circular dichroism spectroscopy (CD). The stability of PC-SLC under light, temperature, pH and simulated gastrointestinal fluid was investigated. The scavenging ability of the complexes against DPPH and ABTS radicals was determined. The results showed that the complex formed by the mass ratio of SA-LZM of 0.1 showed the highest PC encapsulation rate (89.9 ± 0.374%). The combination of SA and LZM changed the secondary conformation of PC. The PC-SLC complex shows an irregular spherical structure and the spheres are clustered together. Compared with phycocyanin (PC), its thermal stability was obviously improved, but it was still greatly influenced by light. It could exist stably in simulated gastric fluid (SGF) for 2 h and be slowly digested in simulated intestinal fluid (SIF), which helped to promote the absorption of nutrients in the intestinal tract. Meanwhile, the complex PC-SLC showed high scavenging ability for DPPH and ABTS radicals. It can be concluded that the complexes have good antioxidant activity. This study provides an idea for the construction of PC delivery system and makes it more widely used in food industry and other fields.

3.
Food Res Int ; 157: 111402, 2022 07.
Article in English | MEDLINE | ID: mdl-35761656

ABSTRACT

The purpose of this study is to explore the effects of IVTNWDDMEK and VGPAGPRG, two angiotensin I-converting enzyme (ACE) inhibitory peptides purified from Volutharpa ampullacea perryi, on ACE's two domains and on nitric oxide (NO), endothelin-1(ET-1) production in human vascular endothelial cells (HUVECs). In addition, we sought to investigate the effects of these two peptides on HUVECs injury induced by H2O2. The results indicated that the inhibition of the ACE C-domain was significantly higher than that of the ACE N-domain by these two peptides. Molecular dynamics (MD) analysis revealed that the hydrogen bonds interactions between ACE and two peptides, the chelation between peptides and Zn2+ both play important role, which might contribute significantly to the ACE inhibitory activity. Two peptides significantly increase NO and ET-1 production in a dose-dependent manner and protects against hydrogen peroxide-induced HUVEC cell injury. The reported results also show that two peptides up-regulated the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1), and reduce the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA). Our study indicated that IVTNWDDMEK and VGPAGPRG could be potent ACE inhibitors and Volutharpa ampullacea perryi is a good source of bioactive peptides, which provided a theoretical basis for the broad application of two selected peptides as functional food with anti-hypertensive activity.


Subject(s)
Gastropoda , Hydrogen Peroxide , Angiotensin-Converting Enzyme Inhibitors/chemistry , Animals , Antihypertensive Agents/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Peptides/chemistry
4.
J Food Biochem ; 45(7): e13779, 2021 07.
Article in English | MEDLINE | ID: mdl-34060658

ABSTRACT

In this article, the selective inhibition of several tyrosine-containing dipeptides on N and C domain of ACE (angiotensin-converting enzyme) was studied, and the interaction mode of ACE and inhibitors was simulated by molecular docking. MTT assay was used to detect the effect of dipeptide on human umbilical vein endothelial cells (HUVEC). The results showed that the food-derived dipeptides AY (Ala-Tyr), LY (Leu-Tyr), and IY (Ile-Tyr) containing tyrosine at the C-terminal were favorable structures for selective inhibition of ACE C-domain. These dipeptides showed competitive and mixed inhibition patterns, while the dipeptides EY (Glu-Tyr), RY (Arg-Tyr), FY (Phe-Tyr), and SY (Ser-Tyr) showed noncompetitive inhibition. Food-derived dipeptides containing tyrosine have no cytotoxicity on HUVEC cells, which provides a basis for the application of food-derived tyrosine dipeptides as antihypertensive peptides. This study provides a theoretical basis for exploring the selective inhibition mechanism of ACE inhibitory peptides containing tyrosine residue. PRACTICAL APPLICATIONS: Angiotensin-converting enzyme (ACE) is a two-domain dipeptidyl carboxypeptidase, which is a key enzyme to regulate blood pressure. ACE has two active sites, C- and N-domain, which have high catalytic activity. Although the amino acid sequences of the two active sites have 60% similarity, there are some differences in structure and function. The action mechanism of ACE domain should be clarified, and the structure-activity relationship between inhibitors and ACE domain has not been systematically studied. The aim of this study was to identify the selective inhibitory effect of food-derived tyrosine dipeptides on the domain of ACE. This provides a new idea for finding new antihypertensive drugs with less side effects.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Tyrosine , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensins , Dipeptides/pharmacology , Endothelial Cells , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A
5.
Carbohydr Res ; 402: 95-101, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25497339

ABSTRACT

A new strategy was applied to elucidate the structure of a polysaccharide from abalone gonad (AGSP). It was hydrolyzed by 0.05 M, 0.2 M, 0.5 M, and 2.0 M TFA at 100 °C for 1 h, sequentially. Every hydrolysate was ultrafiltrated (3000 Da) to collect oligo- and monosaccharides, and the final retentate was further hydrolyzed with 2.0 M TFA at 110 °C and 121 °C for 2 h, respectively. 1-Phenyl-3-methyl-5-pyrazolone (PMP) derivatization followed by HPLC-MSn analysis was applied to detect the sugar residues in these hydrolysates, which allowed proposing their location in the polysaccharide structure. The retentate after 0.5 M TFA hydrolysis was confirmed as the polysaccharide backbone, and it was further analyzed by 1D and 2D NMR spectroscopy. Thus, the structural elucidation of AGSP was accomplished, and it has a backbone of →4)-ß-GlcA(1→2)-α-Man(1→ repeating unit with Fuc, Xyl and Gal in the branch. The analytical strategy demonstrated was useful to characterize the structure of polysaccharides.


Subject(s)
Antipyrine/analogs & derivatives , Mass Spectrometry , Polysaccharides/chemistry , Uronic Acids/chemistry , Antipyrine/chemistry , Carbohydrate Sequence , Chromatography, High Pressure Liquid , Edaravone , Hydrolysis , Magnetic Resonance Spectroscopy , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...