Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 103(24): e38533, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875394

ABSTRACT

Physical examination data are used to indicate individual health status and organ health, and understanding which physical examination data are indicative of physiological aging is critical for health management and early intervention. There is a lack of research on physical examination data and telomere length. Therefore, the present study analyzed the association between blood telomere length and physical examination indices in healthy people of different ages to investigate the role and association of various organs/systems with physiological aging in the human body. The present study was a cross-sectional study. Sixteen physical examination indicators of different tissue and organ health status were selected and analyzed for trends in relation to actual age and telomere length (TL). The study included 632 individuals with a total of 11,766 data for 16 physical examination indicators. Age was linearly correlated with 11 indicators. Interestingly, telomere length was strongly correlated only with the renal indicators eGFR (P < .001), CYS-C (P < .001), and SCR (P < .001). The study established that renal aging or injury is a risk factor for Physical aging of the human body. Early identification and management are essential to healthcare.


Subject(s)
Aging , Biomarkers , Telomere , Humans , Cross-Sectional Studies , Male , Female , Middle Aged , Aging/genetics , Aging/physiology , Adult , Aged , Biomarkers/blood , Young Adult , Physical Examination/methods , Aged, 80 and over , Health Status , Health Status Indicators
2.
Front Microbiol ; 15: 1323160, 2024.
Article in English | MEDLINE | ID: mdl-38500581

ABSTRACT

The acceleration of the nitrogen cycle and the nitrogen excess observed in some coastal waters has increased interest into understanding the biochemical and molecular basis of nitrogen metabolism in various microorganisms. To investigate nitrogen metabolism of a novel heterotrophic nitrification and aerobic denitrification bacterium Klebsiella aerogenes strain (B23) under nitrogen-rich conditions, we conducted physiological and transcriptomic high-throughput sequencing analyses on strain B23 cultured on potassium nitrate-free or potassium nitrate-rich media. Overall, K. aerogenes B23 assimilated 82.47% of the nitrate present into cellular nitrogen. Further, 1,195 differentially expressed genes were observed between K. aerogenes B23 cultured on potassium nitrate-free media and those cultured on potassium nitrate-rich media. Gene annotation and metabolic pathway analysis of the transcriptome were performed using a series of bioinformatics tools, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Non-Redundant Protein Database annotation. Accordingly, the nitrogen metabolism pathway of K. aerogenes B23 was analyzed; overall, 39 genes were determined to be involved in this pathway. Differential expression analysis of the genes involved in the nitrogen metabolism pathway demonstrated that, compared to the control, FNR, NarK/14945, fdx, gshA, proB, proA, gapA, argH, artQ, artJ, artM, ArgR, GAT1, prmB, pyrG, glnS, and Ca1 were significantly upregulated in the nitrogen-treated K. aerogenes B23; these genes have been established to be involved in the regulation of nitrate, arginine, glutamate, and ammonia assimilation. Further, norV, norR, and narI were also upregulated in nitrogen-treated K. aerogenes B23; these genes are involved in the regulation of NO metabolism. These differential expression results are important for understanding the regulation process of key nitrogen metabolism enzyme genes in K. aerogenes B23. Therefore, this study establishes a solid foundation for further research into the expression regulation patterns of nitrogen metabolism-associated genes in K. aerogenes B23 under nitrogen-rich conditions; moreover, this research provides essential insight into how K. aerogenes B23 utilizes nutritional elements.

3.
Food Chem Toxicol ; 176: 113807, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37121429

ABSTRACT

Cadmium (Cd), commonly found in diet and drinking water, is known to be harmful to the human liver. Nevertheless, the effects and mechanisms of gestational Cd exposure on fetal liver development remain unclear. Here, we reported that gestational Cd (150 mg/L) exposure obviously downregulated the expression of critical proteins including PCNA, Ki67 and VEGF-A in proliferation and angiogenesis in fetal livers, and lowered the estradiol concentration in fetal livers and placentae. Maternal estradiol supplement alleviated aforesaid impairments in fetal livers. Our data showed that the levels of pivotal estrogen synthases, such as CYP17A1 and 17ß-HSD, was markedly decreased in Cd-stimulated placentae but not fetal livers. Ground on ovariectomy (OVX), we found that maternal ovarian-derived estradiol had no major effects on Cd-impaired development in fetal liver. In addition, Cd exposure activated placental PERK signaling, and inhibited PERK activity could up-regulated the expressions of CYP17A1 and 17ß-HSD in placental trophoblasts. Collectively, gestational Cd exposure inhibited placenta-derived estrogen synthesis via activating PERK signaling, and therefore impaired fetal liver development. This study suggests a protective role for placenta-derived estradiol in fetal liver dysplasia shaped by toxicants, and provides a theoretical basis for toxicants to impede fetal liver development by disrupting the placenta-fetal-liver axis.


Subject(s)
Cadmium , Trophoblasts , Pregnancy , Female , Humans , Cadmium/toxicity , Cadmium/metabolism , Trophoblasts/metabolism , Placenta/metabolism , Liver/metabolism , Estradiol , Estrogens
4.
Front Pharmacol ; 14: 1349081, 2023.
Article in English | MEDLINE | ID: mdl-38269271

ABSTRACT

Relatlimab is a type of human immunoglobulin G4 monoclonal blocking antibody. It is the world's first Lymphocyte-Activation Gene-3 (LAG-3) inhibitor and the third immune checkpoint inhibitor with clinical application, following PD-1 and CTLA-4. Relatlimab can bind to the LAG-3 receptor which blocks the interaction between LAG-3 and its ligand to reduce LAG-3 pathway-mediated immunosuppression and promote T-cell proliferation, inducing tumor cell death. On 18 March 2022, the U.S. FDA approved the fixed-dose combination of relatlimab developed by Bristol Myers Squibb with nivolumab, under the brand name Opdualag for the treatment of unresectable or metastatic melanoma in adult and pediatric patients aged 12 and older. This study comprehensively describes the mechanism of action and clinical trials of relatlimab and a brief overview of immune checkpoint drugs currently used for the treatment of melanoma.

5.
J Hazard Mater ; 424(Pt A): 127268, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34583167

ABSTRACT

Heavy metal cadmium (Cd), a classical environmental pollutant, causes placental apoptosis and fetal growth restriction (FGR), whereby the mechanism remains unclear. Here, our human case-control study firstly showed that there was a positive association of Parkin mitochondrial translocation, MCL-1 reduction, placental apoptosis, and all-cause FGR. Subsequently, Cd was administered to establish in vitro and in vivo models of placental apoptosis or FGR. Our models demonstrated that Parkin mitochondrial translocation was observed in Cd-administrated placental trophoblasts. Meaningfully, Parkin siRNA (siR) dramatically mitigated Cd-triggered apoptosis in placental trophoblasts. Mdivi-1 (M-1), an inhibitor for Parkin mitochondrial translocation, mitigated Cd-induced apoptosis in placental trophoblasts, which further ameliorated the effect of attenuated placental sizes in Cd-exposed mice. Furthermore, the interaction of MCL-1 with Parkin or Ub in Cd-stimulated cells was stronger than that in controls. MG132, an inhibitor for proteasome, abolished MCL-1 degradation in Cd-stimulated cells. Importantly, Parkin siR and M-1 memorably abolished the ubiquitin-dependent degradation of MCL-1 in placental trophoblasts. Interestingly, mito-TEMPO and melatonin, two mitochondria-targeted antioxidants, obviously rescued Cd-caused mitochondrial membrane potential (MMP) decrease, Parkin mitochondrial translocation, MCL-1 degradation, and apoptosis in placental trophoblasts. In conclusion, cadmium induces placental apoptosis and FGR via mtROS-mediated Parkin-modulated degradation of MCL-1.


Subject(s)
Fetal Growth Retardation , Placenta , Animals , Apoptosis , Cadmium/toxicity , Case-Control Studies , Female , Fetal Growth Retardation/chemically induced , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Pregnancy , Ubiquitin-Protein Ligases/genetics
6.
Curr Mol Pharmacol ; 15(3): 463-474, 2022.
Article in English | MEDLINE | ID: mdl-34126919

ABSTRACT

Nasopharyngeal Carcinoma (NPC), which is associated with latent Epstein-Barr virus infection in most cases, is a unique epithelial malignancy arising from the nasopharyngeal mucosal lining. Accumulating evidence is providing insights into the genetic and molecular aberrations that likely drive nasopharyngeal tumor development and progression. We review recent analyses of microRNAs (miRNAs), including Epstein-Barr virus-encoded miRNAs (EBV-encoded miRNAs) and dysregulated cellular miRNAs, that may be related to the metastasis of nasopharyngeal carcinoma. The studies summarized herein have greatly expanded our knowledge of the molecular biology of NPC involving miRNAs, and they may provide new biological targets for clinical diagnosis and reveal the potential of microRNA therapeutics. However, much remains to be uncovered.


Subject(s)
Epstein-Barr Virus Infections , MicroRNAs , Nasopharyngeal Neoplasms , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Humans , MicroRNAs/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , RNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...