Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Netw Open ; 7(1): e2351839, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38261323

ABSTRACT

Importance: Questions have emerged as to whether standard intranasal naloxone dosing recommendations (ie, 1 dose with readministration every 2-3 minutes if needed) are adequate in the era of illicitly manufactured fentanyl and its derivatives (hereinafter, fentanyl). Objective: To compare naloxone plasma concentrations between different intranasal naloxone repeat dosing strategies and to estimate their effect on fentanyl overdose. Design, Setting, and Participants: This unblinded crossover randomized clinical trial was conducted with healthy participants in a clinical pharmacology unit (Spaulding Clinical Research, West Bend, Wisconsin) in March 2021. Inclusion criteria included age 18 to 55 years, nonsmoking status, and negative test results for the presence of alcohol or drugs of abuse. Data analysis was performed from October 2021 to May 2023. Intervention: Naloxone administered as 1 dose (4 mg/0.1 mL) at 0, 2.5, 5, and 7.5 minutes (test), 2 doses at 0 and 2.5 minutes (test), and 1 dose at 0 and 2.5 minutes (reference). Main Outcomes and Measures: The primary outcome was the first prespecified time with higher naloxone plasma concentration. The secondary outcome was estimated brain hypoxia time following simulated fentanyl overdoses using a physiologic pharmacokinetic-pharmacodynamic model. Naloxone concentrations were compared using paired tests at 3 prespecified times across the 3 groups, and simulation results were summarized using descriptive statistics. Results: This study included 21 participants, and 18 (86%) completed the trial. The median participant age was 34 years (IQR, 27-50 years), and slightly more than half of participants were men (11 [52%]). Compared with 1 naloxone dose at 0 and 2.5 minutes, 1 dose at 0, 2.5, 5, and 7.5 minutes significantly increased naloxone plasma concentration at 10 minutes (7.95 vs 4.42 ng/mL; geometric mean ratio, 1.95 [1-sided 97.8% CI, 1.28-∞]), whereas 2 doses at 0 and 2.5 minutes significantly increased the plasma concentration at 4.5 minutes (2.24 vs 1.23 ng/mL; geometric mean ratio, 1.98 [1-sided 97.8% CI, 1.03-∞]). No drug-related serious adverse events were reported. The median brain hypoxia time after a simulated fentanyl 2.97-mg intravenous bolus was 4.5 minutes (IQR, 2.1-∞ minutes) with 1 naloxone dose at 0 and 2.5 minutes, 4.5 minutes (IQR, 2.1-∞ minutes) with 1 naloxone dose at 0, 2.5, 5, and 7.5 minutes, and 3.7 minutes (IQR, 1.5-∞ minutes) with 2 naloxone doses at 0 and 2.5 minutes. Conclusions and Relevance: In this clinical trial with healthy participants, compared with 1 intranasal naloxone dose administered at 0 and 2.5 minutes, 1 dose at 0, 2.5, 5, and 7.5 minutes significantly increased naloxone plasma concentration at 10 minutes, whereas 2 doses at 0 and 2.5 minutes significantly increased naloxone plasma concentration at 4.5 minutes. Additional research is needed to determine optimal naloxone dosing in the community setting. Trial Registration: ClinicalTrials.gov Identifier: NCT04764630.


Subject(s)
Hypoxia, Brain , Opiate Overdose , Male , Humans , Adolescent , Young Adult , Adult , Middle Aged , Female , Ethanol , Commerce , Fentanyl , Naloxone/therapeutic use
2.
J Pharm Biomed Anal ; 212: 114646, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35180564

ABSTRACT

SBECD (Captisol®) with an average degree of substitution of 6.5 sulfobutylether functional groups (SBE = 6.5), is a solubility enhancer for remdesivir (RDV) and a major component in Veklury, which was approved by FDA for the treatment of patients with COVID-19 over 12 years old and weighing over 40 kg who require hospitalization. SBECD is cleared mainly by renal filtration, thus, potential accumulation of SBECD in the human body is a concern for patients dosed with Veklury with compromised renal function. An LC-MS/MS method was developed and validated for specific, accurate, and precise determination of SBECD concentrations in human plasma. In this method, the hexa-substituted species, SBE6, was selected for SBECD quantification, and the mass transition from its dicharged molecular ion [(M-2H)/2]2-, Molecular (parent) Ion (Q1)/Molecular (parent) Ion (Q3) of m/z 974.7/974.7, was selected for quantitative analysis of SBECD. Captisol-G (SBE-γ-CD, SBE = 3) was chosen as the internal standard. With 25 µL of formic-acid-treated sample and with a calibration range of 10.0-1000 µg/mL, the method was validated with respect to pre-established criteria based on regulatory guidelines and was applied to determine SBECD levels in plasma samples collected from pediatric patients during RDV clinical studies.


Subject(s)
COVID-19 Drug Treatment , beta-Cyclodextrins , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Child , Chromatography, Liquid , Humans , SARS-CoV-2 , Sodium , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...