Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Funct ; 15(5): 2524-2535, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38345089

ABSTRACT

Lactic acid bacterial fermentation helps reduce the immunoreactivity of soy protein. Nevertheless, the effect of lactic acid bacterial fermentation on a particular soy allergen and the consequent dynamic change of epitopes during gastrointestinal digestion are unclear. In this study, soy glycinin was isolated and an in vitro dynamic gastrointestinal model was established to investigate the dynamic change in the immunoreactivity and peptide profile of unfermented (UG) and fermented glycinin (FG) digestates. The results demonstrated that the FG intestinal digestate had a lower antigenicity (0.08%-0.12%) and IgE-binding capacity (1.49%-3.61%) towards glycinin at the early (I-5) and middle (I-30) stages of gastrointestinal digestion, especially those prepared at 2% (w/v) protein concentration. Peptidomic analysis showed that the glycinin subunits G1 and G2 were the preferred ones to release the most abundant peptides, whereas G2, G4, and G5 had an elevated epitope-cleavage rate in FG at stages I-5 and I-30. Three-dimensional modeling revealed that fermentation-induced differential degradation epitopes in gastrointestinal digestion were predominantly located in the α-helix and ß-sheet structures. They were closely correlated with the reduced immunoreactivity of soy glycinin.


Subject(s)
Globulins , Soybean Proteins , Soybean Proteins/chemistry , Globulins/chemistry , Epitopes/chemistry , Digestion , Lactic Acid , Proteomics
2.
Food Res Int ; 175: 113733, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128990

ABSTRACT

Soy allergenicity is a public concern, and the combination of multiple processing methods may be a promising strategy for reducing soy allergenicity. In this study, a novel two-step enzymatic hydrolysis followed by lactic acid bacteria fermentation was proposed for the construction of hypoallergenic soybean protein microgel. ß-Conglycinin was used as the main soy allergen. The effects of different enzymatic hydrolysis (Alcalase, Neutrase, and Protamex) and LAB fermentation on ß-conglycinin microgel formation and its immunoreactivity were investigated. Results showed that the use of different enzymes and the attainment of different degrees of hydrolysis affected the particle distribution and zeta potential in the microgels and leads to differences in microstructure and immunoreactivity. All hydrolysates compared with intact protein accelerated the formation of gel during LAB fermentation. Among the three assayed enzymes, fermented Protamex hydrolysates at 60 min (PF-60) demonstrated a microgel with an overall reduced average particle size (741.20±7.18 nm), lower absolute values of zeta potential (10.43±0.65 mV), and regular gel network. The antigenicity and IgE-binding capacity decreased to the lowest value of 0.30 % and 6.93 %, respectively. Peptidomics and immunoinformatic analysis suggested that PF-60 disrupted 17/30, 16/44, and 23/75 epitopes in the α, α', and ß subunits, respectively. Unlike the LAB-fermented unhydrolyzed ß-conglycinin disrupted epitopes mostly located at the loop domain, PF-60 primarily promoted the exposure and disruption of allergen epitopes with ß-sheet structure located at the core barrel domain. These findings can provide new perspectives on the preparation of hypoallergenic soybean-gel products on edible particulate systems.


Subject(s)
Lactobacillales , Microgels , Soybean Proteins/chemistry , Allergens/chemistry , Lactobacillales/metabolism , Fermentation , Hydrolysis , Epitopes
3.
Front Aging Neurosci ; 15: 1290231, 2023.
Article in English | MEDLINE | ID: mdl-38094506

ABSTRACT

Background: Type 2 diabetes (T2DM) is a polygenic metabolic disorder that accelerates brain aging and harms cognitive function. The underlying mechanism of T2DM-related brain functional changes has not been clarified. Methods: Resting-fMRI data were obtained from 99 T2DM and 109 healthy controls (HCs). Resting-state functional connectivity networks (RSNs) were separated using the Independent Component Analysis (ICA) method, and functional connectivity (FC) differences between T2DM patients and HCs within the RSNs were detected. A partial least squares (PLS) regression was used to test the relation between gene expression from Allen Human Brain Atlas (AHBA) and intergroup FC differences within RSNs. Then the FC differences-related gene sets were enriched to determine the biological processes and pathways related to T2DM brain FC changes. Result: The T2DM patients showed significantly increased FC in the left middle occipital gyrus (MOG) of the precuneus network (PCUN) and the right MOG / right precuneus of the dorsal attention network (DAN). FC differences within the PCUN were linked with the expression of genes enriched in the potassium channel and TrkB-Rac1 signaling pathways and biological processes related to synaptic function. Conclusion: This study linked FC and molecular alterations related to T2DM and suggested that the T2DM-related brain FC changes may have a genetic basis. This study hoped to provide a unique perspective to understand the biological substrates of T2DM-related brain changes.

4.
Food Res Int ; 173(Pt 1): 113281, 2023 11.
Article in English | MEDLINE | ID: mdl-37803593

ABSTRACT

Soy allergy is a common health problem. Food structure may change the gastroduodenal digestion and absorption of soy proteins, thus leading to the modulation of the immunoreactivity of soy proteins. In this study, lactic acid bacterium (LAB)-fermented soy protein isolates (FSPIs) were prepared at four concentrations (0.2 %-5.0 %, w/v) to present various matrix structures (nongel, NG; weak gel, WG; medium gel, MG; and firm gel, FG) and subjected to in vitro dynamic gastroduodenal digestion model. The results of sandwich enzyme-linked immunosorbent and human serum IgE binding capacity assays demonstrated that FSPI gels, especially the FSPI-MG/WG digestates obtained at the early and medium stages of duodenal digestion (D-5 and D-30), possessed greater potency in immunoreactivity reduction than FSPI-NG and reduced to 1.9 %-68.3 %. The transepithelial transport study revealed that the immunoreactivity of FSPI-MG/WG D-5 and D-30 digestates decreased through the stimulation of interferon-γ production and the induction of dominant Th1/Th2 differentiation. Peptidomics and bioinformatics analyses illustrated that compared with FSPI-NG, the FSPI-gel structure promoted the epitope degradation of the major allergens glycinin G2/G5, ß-conglycinin α/ß subunit, P34, lectin, trypsin inhibitor, and basic 7S globulin. Spatial structure analysis showed that FSPI-gel elicited an overall promotion in the degradation of allergen epitopes located in interior and exterior regions and was dominated by α-helix and ß-sheet secondary structures, whereas FSPI-MG/WG promoted the degradation of epitopes located in the interior region of glycinin/ß-conglycinin and exterior region of P34/basic 7S globulin. This study suggested that the FSPI-gel structure is a promising food matrix for decreasing the allergenic potential of allergenic epitopes during gastroduodenal digestion and provided basic information on the production of hypoallergenic soy products.


Subject(s)
Globulins , Soybean Proteins , Humans , Soybean Proteins/chemistry , Glycine max/chemistry , Epitopes/chemistry , Globulins/chemistry , Digestion
5.
Molecules ; 27(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36364477

ABSTRACT

This study investigated the effect of lactic-acid-bacteria fermentation on the microstructure and gastrointestinal digestibility of soy proteins using a digestomics approach. Fermented soy protein isolates (FSPIs) under varied fermentation-terminal pH demonstrated a colloidal solution (FSPI-7.0/6.0) or yogurt-like curd (FSPI-5.0/4.0) state. Cryo-electron microscopy figures demonstrated the loosely stacked layer of FSPI-7.0/6.0 samples, whereas a denser gel network was observed for FSPI-5.0/4.0 samples. Molecular interactions shifted from dominant ionic bonds to hydrophobic forces and disulfide bonds. The gastric/intestinal digestion demonstrated that the curd samples afforded a significantly low particle size and high-soluble protein and peptide contents in the medium and late digestive phases. A peptidomics study showed that the FSPI-6.0 digestate at early intestinal digestion had a high peptidome abundance, whereas FSPI curd digestates (FSPI-5.0/4.0) elicited a postponed but more extensive promotion during medium and late digestion. Glycinin G2/G4 and ß-conglycinin α/α' subunits were the major subunits promoted by FSPI-curds. The spatial structures of glycinin G2 and ß-conglycinin α subunits demonstrated variations located in seven regions. Glycinin G2 region 6 (A349-K356) and ß-conglycinin α subunit region 7 (E556-E575), which were located at the interior of the 3D structure, were the key regions contributing to discrepancies at the late stage.


Subject(s)
Globulins , Lactobacillales , Soybean Proteins/chemistry , Lactobacillales/metabolism , Cryoelectron Microscopy , Globulins/chemistry , Seed Storage Proteins/chemistry , Antigens, Plant/chemistry , Dietary Supplements , Gastrointestinal Tract/metabolism , Glycine max/metabolism
6.
Front Aging Neurosci ; 14: 964463, 2022.
Article in English | MEDLINE | ID: mdl-36185474

ABSTRACT

Amnestic mild cognitive impairment (aMCI) and Type 2 diabetes mellitus (T2DM) are both important risk factors for Alzheimer's disease (AD). We aimed to investigate whether a T2DM-specific polygenic risk score (PRS sT2DM ) can predict the conversion of aMCI to AD and further explore the underlying neurological mechanism. All aMCI patients were from the Alzheimer's disease Neuroimaging Initiative (ADNI) database and were divided into conversion (aMCI-C, n = 164) and stable (aMCI-S, n = 222) groups. PRS sT2DM was calculated by PRSice-2 software to explore the predictive efficacy of the aMCI conversion to AD. We found that PRS sT2DM could independently predict the aMCI conversion to AD after removing the common variants of these two diseases. PRS sT2DM was significantly negatively correlated with gray matter volume (GMV) of the right superior frontal gyrus in the aMCI-C group. In all aMCI patients, PRS sT2DM was significantly negatively correlated with the cortical volume of the right superior occipital gyrus. The cortical volume of the right superior occipital gyrus could significantly mediate the association between PRS sT2DM and aMCI conversion. Gene-based analysis showed that T2DM-specific genes are highly expressed in cortical neurons and involved in ion and protein binding, neural development and generation, cell junction and projection, and PI3K-Akt and MAPK signaling pathway, which might increase the aMCI conversion by affecting the Tau phosphorylation and amyloid-beta (Aß) accumulation. Therefore, the PRS sT2DM could be used as a measure to predict the conversion of aMCI to AD.

7.
Brain Imaging Behav ; 16(6): 2506-2516, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35904672

ABSTRACT

Type 2 diabetes is associated with a higher risk of dementia. The pathogenesis is complex and partly influenced by genetic factors. The hippocampus is the most vulnerable brain region in individuals with type 2 diabetes. However, whether the genetic risk of type 2 diabetes is associated with the hippocampus and episodic memory remains unclear. This study explored the influence of polygenic risk score (PRS) of type 2 diabetes on the white matter topological properties of the hippocampus among individuals with and without type 2 diabetes and its associations with episodic memory. This study included 103 individuals with type 2 diabetes and 114 well-matched individuals without type 2 diabetes. All the participants were genotyped, and a diffusion tensor imaging-based structural network was constructed. PRS was calculated based on a genome-wide association study of type 2 diabetes. The PRS-by-disease interactions on the bilateral hippocampal topological network properties were evaluated by analysis of covariance (ANCOVA). There were significant PRS-by-disease interaction effects on the nodal topological properties of the right hippocampus node. In the individuals with type 2 diabetes, the PRS was correlated with the right hippocampal nodal properties, and the nodal properties were correlated with the episodic memory. In addition, the right hippocampal nodal properties mediated the effect of PRS on episodic memory in individuals with type 2 diabetes. Our results suggested a gene-brain-cognition biological pathway, which might help understand the neural mechanism of the genetic risk of type 2 diabetes affects episodic memory in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Memory, Episodic , Humans , Diffusion Tensor Imaging , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Genome-Wide Association Study , Magnetic Resonance Imaging , Hippocampus/diagnostic imaging , Hippocampus/pathology , Risk Factors
8.
Brain Imaging Behav ; 16(4): 1657-1670, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35212890

ABSTRACT

Previous studies identified some genetic loci of emotion, but few focused on human emotion-related gene expression. In this study, the facial expression recognition (FER) task-based high-resolution fMRI data of 203 subjects in the Human Connectome Project (HCP) and expression data of the six healthy human postmortem brain tissues in the Allen Human Brain Atlas (AHBA) were used to conduct a transcriptome-neuroimaging spatial association analysis. Finally, 371 genes were identified to be significantly associated with FER-related brain activations. Enrichment analyses revealed that FER-related genes were mainly expressed in the brain, especially neurons, and might be related to cell junction organization, synaptic functions, and nervous system development regulation, indicating that FER was a complex polygenetic biological process involving multiple pathways. Moreover, these genes exhibited higher enrichment for psychiatric diseases with heavy emotion impairments. This study provided new insight into understanding the FER-related biological mechanisms and might be helpful to explore treatment methods for emotion-related psychiatric disorders.


Subject(s)
Facial Recognition , Brain/diagnostic imaging , Emotions/physiology , Facial Expression , Facial Recognition/physiology , Gene Expression , Humans , Magnetic Resonance Imaging , Neuropsychological Tests
9.
J Sci Food Agric ; 101(3): 871-879, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32729126

ABSTRACT

BACKGROUND: The aim of this study was to investigate the effect of lactic fermentation on soy protein gastrointestinal digestive pattern and the influence of protein digesta on human faecal microbiota. Soymilk and soy yogurt were prepared in this study and a novel in vitro dynamic gastrointestinal model was employed to simulate gastric and duodenum digestions. Particle size, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and peptide content were monitored at the end of duodenum tract. RESULTS: Ingestion of soy yogurt allowed a rapid drop in pH from 7.0 to 5.0 at simulated duodenal digestion (0-30 min), and resulted in a loss in soluble protein content compared to that of soymilk. The electrophoretic pattern between soymilk and soy yogurt exerted distinctive differences at early stages of duodenal digestion (0-60 min) and resulted in different peptide contents (180 min). Soy yogurt duodenal digesta collected at 180 min (D180), by co-fermentation with human intestinal flora distribution, allowed a higher population in Bifidobacterium spp., Lactobacillus/Enterococcus spp. and Streptococcus/Lactococcus spp., whereas soy yogurt D30 resulted in lower population in Clostridium and Escherichia coli compared to samples co-fermented with soymilk digesta. CONCLUSION: The results demonstrated lactic fermentation of soy protein modulated human intestinal microflora and might relate to the different protein digestive behaviours. © 2020 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Tract/metabolism , Lactobacillaceae/metabolism , Soybean Proteins/metabolism , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Digestion , Feces/microbiology , Female , Fermentation , Gastrointestinal Tract/microbiology , Humans , Lactobacillaceae/classification , Lactobacillaceae/genetics , Lactobacillaceae/isolation & purification , Male , Soy Foods/analysis
10.
Huan Jing Ke Xue ; 41(3): 1085-1092, 2020 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-32608608

ABSTRACT

From March 2018 to February 2019, quantitative detection was made of 102 kinds of atmospheric volatile organic compounds (VOCs) using online gas chromatography in Ezhou City. We compared and analyzed the composition, seasonal variation, and diurnal variation of VOCs. Using maximum incremental reactivity (MIR), we estimated the ozone generation potential (OFP) of VOCs. The results show that the annual average volume fraction of atmospheric VOCs in Ezhou is (30.78±15.89)×10-9, and is overall higher in winter than summer, represented by alkane > oxygen > halogenated hydrocarbon > olefin > aromatic hydrocarbon > alkyne. The night volume fraction is higher than in the daytime, and overall the distribution is "double peak". The aromatic hydrocarbons, halogenated hydrocarbons, and OVOCs appear as a "third peak" at 00:00-02:00. Aromatic hydrocarbons and olefins contribute more to the OFP potential of VOCs, with contribution rates of 35.45% and 29.5%, respectively. The highest contribution rate to OFP is ethylene, reaching 24.217%. Analysis of VOC characteristic species found that vehicle exhaust fumes and solvent volatilization are the main sources of VOCs in Ezhou. Of these, motor vehicle emissions are the most important source. Controlling Ezhou's motor vehicle emissions helps to reduce the composition of atmospheric VOCs, thereby reducing ozone production.

SELECTION OF CITATIONS
SEARCH DETAIL
...