Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Bioanalysis ; 16(9): 307-364, 2024.
Article in English | MEDLINE | ID: mdl-38913185

ABSTRACT

The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with this NEW Regulation" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication covers the recommendations on Mass Spectrometry Assays, Regulated Bioanalysis/BMV (Part 1A) and Regulatory Inputs (Part 1B). Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 16 of Bioanalysis, issues 7 and 8 (2024), respectively.


Subject(s)
Proteomics , Humans , Proteomics/methods , Mass Spectrometry/methods , Biomarkers/analysis , United States , Cell- and Tissue-Based Therapy , Genetic Therapy , Chromatography/methods , White
2.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1214-1222, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886419

ABSTRACT

Quantitative analysis of vessel characteristics at the cellular scale is of great significance for understan-ding plant adaptation strategies to environment. The direct grinding combined with stereo-microscope imaging is one of the main approaches to examine the anatomical structure of xylem (conifer tracheid and hardwood vessel) wood structure, which inevitably damages xylem cells, hindering the accurate understanding of anatomical structures. In this study, we applied X-ray micro-computed tomography (µCT) and stereo-microscope technology to quantitatively measure the diameter and area of vessels of seven Canadian broadleaved tree species (Acer saccharum, Betula papyrifera, Fraxinus americana, Ostrya virginiana, Populus grandidentata, Quercus rubra, and Carya cordiformis). We fitted the results by linear model and tested the feasibility of µCT technology in quantifying the vessel size of broadleaved species. We found that the results of the two methods for measuring vessel size were highly similar (R2=0.98). The goodness of fit of the vessel diameter results measured by the two methods for the ring-porous wood species (C. cordiformis, R2=0.98; F. americana, R2=0.96; Q. rubra, R2=0.99) was higher than that of the diffuse-porous wood species (B. papyrifera, R2=0.88; O. virginiana, R2=0.73; A. saccharum, R2=0.68; P. grandiden-tata, R2=0.88). The goodness of fit of small vessels (diameter≤200 µm, R2=0.94) measured by the two methods was higher than that of large vessels (diameter>200 µm, R2=0.92). Thus, the µCT technique provided a new non-destructive detection method for quantifying xylem vessels of broadleaved tree species.


Subject(s)
Acer , Fraxinus , Populus , Quercus , Trees , X-Ray Microtomography , Xylem , X-Ray Microtomography/methods , Betula
3.
Clin Transl Sci ; 17(5): e13789, 2024 May.
Article in English | MEDLINE | ID: mdl-38761014

ABSTRACT

This first-in-human study evaluated the safety, tolerability, single- and multiple-dose pharmacokinetic profiles with dietary influence, and pharmacodynamics (PD) of DFV890, an oral NLRP3 inhibitor, in healthy participants. In total, 122 participants were enrolled into a three-part trial including single and 2-week multiple ascending oral doses (SAD and MAD, respectively) of DFV890, and were randomized (3:1) to DFV890 or placebo (SAD [3-600 mg] and MAD [fasted: 10-200 mg, once-daily or fed: 25 and 50 mg, twice-daily]). DFV890 was generally well-tolerated. Neither deaths nor serious adverse events were reported. A less than dose-proportional increase in exposure was observed with the initially used crystalline suspension (3-300 mg); however, an adjusted suspension formulation using spray-dried dispersion (SDD; 100-600 mg) confirmed dose-proportional increase in exposure. Relative bioavailability between crystalline suspension and tablets, and food effect were evaluated at 100 mg. Under fasting conditions, Cmax of the tablet yielded 78% compared with the crystalline suspension, and both formulations showed comparable AUC. The fed condition led to a 2.05- and 1.49-fold increase in Cmax and AUC0-last compared with the fasting condition. The median IC50 and IC90 for ex-vivo lipopolysaccharide-stimulated interleukin IL-1ß release inhibition (PD) were 61 (90% CI: 50, 70) and 1340 ng/mL (90% CI: 1190, 1490). Crystalline tablets of 100 mg once-daily or 25 mg twice-daily were sufficient to maintain ~90% of the IL-1ß release inhibition over 24 h at steady state. Data support dose and formulation selection for further development in diseases, in which an overactivated NLRP3 represents the underlying pathophysiology.


Subject(s)
Dose-Response Relationship, Drug , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Male , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Adult , Female , Administration, Oral , Middle Aged , Young Adult , Interleukin-1beta/metabolism , Healthy Volunteers , Food-Drug Interactions , Double-Blind Method , Biological Availability , Adolescent , Drug Administration Schedule
5.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675648

ABSTRACT

Currently, the planting of 'Qi-Nan' is continuously increasing, yet a substantial amount of 'Qi-Nan' leaves have not been properly exploited. To improve the 'Qi-Nan' tree 's utilization value, 'Qi-Nan' leaves were used as a raw material. An ultrasound-assisted method was performed to obtain the flavonoids from the 'Qi-Nan' leaves, followed by optimization of the extraction factors using a one-way and response surface methodology to enhance the extraction of flavonoids. Subsequently, the composition of the flavonoids, as well as their bioactive abilities, were analyzed by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) and in vitro activity testing methods. The findings demonstrated that a 1:50 material-to-liquid ratio, 60% ethanol concentration, and ultrasound-assisted extraction time of 30 min were the ideal procedures for extracting flavonoids (flavonoid content: 6.68%). Meanwhile, the 'Qi-Nan' leaves possessed the antioxidant and medicinal potential to prevent diabetes and Alzheimer 's disease, as evidenced by the semi-inhibitory concentrations (IC50 values) of flavonoid extracts for scavenging DPPH• free radicals, scavenging ABTS•+ free radicals, inhibiting acetylcholinesterase, and inhibiting α-glucosidase, which were 12.64 µg/mL, 66.58 µg/mL, 102.31 µg/mL, and 38.76 µg/mL, respectively, which indicated that the 'Qi-Nan' leaves possessed the properties of antioxidant and medicinal potential for the prevention of Alzheimer 's disease and diabetes.


Subject(s)
Antioxidants , Flavonoids , Plant Extracts , Plant Leaves , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/isolation & purification , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Thymelaeaceae/chemistry
6.
Biomed Chromatogr ; 38(3): e5795, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38071756

ABSTRACT

Following the highly successful Chinese American Society for Mass Spectrometry (CASMS) conferences in the previous 2 years, the 3rd CASMS Conference was held virtually on August 28-31, 2023, using the Gather.Town platform to bring together scientists in the MS field. The conference offered a 4-day agenda with a scientific program consisting of two plenary lectures, and 14 parallel symposia in which a total of 70 speakers presented technological innovations and their applications in proteomics and biological MS and metabo-lipidomics and pharmaceutical MS. In addition, 16 invited speakers/panelists presented at two research-focused and three career development workshops. Moreover, 86 posters, 12 lightning talks, 3 sponsored workshops, and 11 exhibitions were presented, from which 9 poster awards and 2 lightning talk awards were selected. Furthermore, the conference featured four young investigator awardees to highlight early-career achievements in MS from our society. The conference provided a unique scientific platform for young scientists (i.e. graduate students, postdocs, and junior faculty/investigators) to present their research, meet with prominent scientists, learn about career development, and job opportunities (http://casms.org).


Subject(s)
Mass Spectrometry , Lipidomics , Pharmaceutical Preparations , Proteomics , Congresses as Topic
7.
BMC Plant Biol ; 23(1): 559, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37957552

ABSTRACT

BACKGROUND: The formation of a tree's heartwood gives the wood properties such as natural decay resistance and aesthetic color, and often directly determines the value of wood products. Regulating the quantity and quality of heartwood is of great importance to the use of wood. However, the mechanism of heartwood formation has been poorly understood. RESULTS: Using Dalbergia odorifera as the study species, the number of starch grains, the morphology of the nuclei, the changes in the content of water and secondary metabolites were observed continuously in the radial direction of the xylem. The results show that from the outer toward inner sapwood, the starch grains are abundant, the length to diameter ratio of the nuclei is decreasing, and the morphology changes from elongated elliptical and then to round. In the outer transition zone, the starch grains begin to decrease abruptly and the nuclei shrink at a slower rate, with a radial width of approximately 2 mm. In the inner transition zone, the heartwood color begins to appear, the starch grains disappear and a few nuclei with reduced fluorescence are present, with a radial width of approximately 1 mm. Heartwood formation after complete disappearance of the nuclei. The moisture content of the heartwood is higher than that of the sapwood, and the inner transition zone is where the content rises. The secondary metabolites of the heartwood begin to accumulate in large quantities in the inner transition zone. CONCLUSION: Based on the physiological changes of parenchyma cells in the xylem, the radial width of the transition zone of Dalbergia odorifera is clearly defined as approximately 3 mm. Both the water and secondary metabolite abrupt changes occur at the final stage of programmed cell death, and neither is a direct cause of programmed cell death in parenchyma cells.


Subject(s)
Dalbergia , Dalbergia/metabolism , Xylem/metabolism , Wood/metabolism , Water/metabolism , Starch/metabolism
8.
BMC Plant Biol ; 23(1): 546, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936056

ABSTRACT

BACKGROUND: Dalbergia odorifera is a precious tree species with unique economic and medicinal values, which is difficult to distinguish from Dalbergia tonkinensis by traditional identification methods such as morphological characteristics and wood structure characteristics. It has been demonstrated that the identification of tree species can be effectively achieved using DNA barcoding, but there is a lack of study of the combined sequences used as DNA barcodes in the two tree species. In this study, 10 single sequences and 4 combined sequences were selected for analysis, and the identification effect of each sequence was evaluated by the distance-based method, BLAST-based search, character-based method, and tree-based method. RESULTS: Among the single sequences and the combined sequences, the interspecies distance of trnH-psbA and ITS2 + trnH-psbA was greater than the intraspecies distance, and there was no overlap in their frequency distribution plots. The results of the Wilcoxon signed-rank test for the interspecies distance of each sequence showed that the interspecies differences of the single sequences except trnL-trnF, trnH-psbA, and ycf3 were significantly smaller than those of the combined sequences. The results of BLAST analysis showed that trnH-psbA could accurately identify D. odorifera and D. tonkinensis at the species level. In the character-based method, single sequences of trnL-trnF, trnH-psbA with all the combined sequences can be used for the identification of D. odorifera and D. tonkinensis. In addition, the neighbor-joining (NJ) trees constructed based on trnH-psbA and ITS2 + trnH-psbA were able to cluster D. odorifera and D. tonkinensis on two clades. CONCLUSIONS: The results showed that the character-based method with the BLOG algorithm was the most effective among all the evaluation methods, and the combined sequences can improve the ability to identify tree species compared with single sequences. Finally, the trnH-psbA and ITS2 + trnH-psbA were proposed as DNA barcodes to identify D. odorifera and D. tonkinensis.


Subject(s)
DNA Barcoding, Taxonomic , Dalbergia , DNA Barcoding, Taxonomic/methods , Dalbergia/genetics , DNA, Plant/genetics , Sequence Analysis, DNA
9.
J Agric Food Chem ; 71(42): 15620-15631, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37750837

ABSTRACT

To prevent the exploitation of wild agarwood, the development of artificial agarwood through fungal inoculation is a promising method, but finding species that produce efficient high-quality agarwood remains difficult. In this study, a fungal inducer was prepared using wild agarwood containing fungi and high-throughput sequencing was performed to determine its species makeup. Subsequently, it was used to inoculate Aquilaria sinensis(Lour.) Spreng. The induced agarwood (IA), wild agarwood (WA), and nonresinous whitewood (WW) were analyzed for the extract content. In addition, liquid and gas chromatography-mass spectrometry was used to determine the chemical composition of the samples. The results were used to evaluate the quality of the IA. Mortierella humilisLinnem. ex W.Gams, Oidiodendron maius(Barron), and Tolypocladium album(W. Gams) Quandt, Kepler, and Spatafora were the fungal inducers that were discovered to produce agarwood. The extracts from the IA and WA contained 64 and 69 2-(2-phenylethyl)chromones, respectively, while there were none in the WW. Furthermore, 20 (relative content 36.19%) and 27 (relative content 54.92%) sesquiterpenes were identified in the essential oils of the IA and WA, respectively, and none were identified in the WW. The fungal inducer that was prepared from the WA effectively improves the quality of the agarwood, which is extremely similar to that of the WA.


Subject(s)
Oils, Volatile , Thymelaeaceae , Chromones , Gas Chromatography-Mass Spectrometry , Fungi , Wood/chemistry
10.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569814

ABSTRACT

R2R3-MYB transcription factors (TFs) form one of the most important TF families involved in regulating various physiological functions in plants. The heartwood of Dalbergia odorifera is a kind of high-grade mahogany and valuable herbal medicine with wide application. However, the role of R2R3-MYB genes in the growth and development of D. odorifera, especially their relevance to heartwood formation, has not been revealed. A total of 126 R2R3-MYBs were screened from the D. odorifera genome and named DodMYB1-126 based on their location on 10 chromosomes. The collinearity results showed that purification selection was the main driving force for the evolution of the R2R3-MYB TFs family, and whole genome/fragment replication event was the main form for expanding the R2R3-MYB family, generating a divergence of gene structure and function. Comparative phylogenetic analysis classified the R2R3-MYB TFs into 33 subfamilies. S3-7,10,12-13,21 and N4-7 were extensively involved in the metabolic process; S9,13,16-19,24-25 and N1-3,8 were associated with the growth and development of D. odorifera. Based on the differential transcriptional expression levels of R2R3-MYBs in different tissues, DodMYB32, DodMYB55, and DodMYB89 were tentatively screened for involvement in the regulatory process of heartwood. Further studies have shown that the DodMYB89, localized in the nucleus, has transcriptional activation activity and is involved in regulating the biosynthesis of the secondary metabolites of heartwood by activating the promoters of the structural genes DodI2'H and DodCOMT. This study aimed to comprehensively analyze the functions of the R2R3-MYB TFs and screen for candidate genes that might be involved in heartwood formation of D. odorifera.


Subject(s)
Dalbergia , Transcription Factors , Humans , Transcription Factors/metabolism , Dalbergia/genetics , Genes, myb , Phylogeny , Plant Proteins/metabolism , Gene Expression Regulation, Plant
11.
Bioanalysis ; 15(16): 955-1016, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37650500

ABSTRACT

The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.


Subject(s)
Chromatography , Vaccines , Biomarkers , Cell- and Tissue-Based Therapy , Mass Spectrometry , Oligonucleotides , Technology
12.
Anal Chem ; 95(28): 10812-10819, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37402311

ABSTRACT

Radioligand therapy (RLT) has gained significant momentum in recent years in the diagnosis, treatment, and monitoring of cancers. In preclinical development, the safety profile of RLT drug candidate(s) is investigated at relatively low dose levels using the cold (non-radioactive, e.g., 175Lu) ligand as a surrogate of the hot (radioactive, e.g., 177Lu) one in the "ligand-linker-chelator" complex. The formulation of the test article used in preclinical safety studies contains a mixture of free ligand (i.e., ligand-linker-chelator without metal) and cold ligand (i.e., ligand-linker-chelator with non-radioactive metal) in a similar molar ratio as seen under the manufacturing conditions for the RLT drug for clinical use, where only a fraction of free ligand molecules chelate the radioactive metal to form a hot ligand. In this very first report of LC-MS/MS bioanalysis of RLT molecules in support of a regulated preclinical safety assessment study, a highly selective and sensitive LC-MS/MS bioanalytical method was developed for the simultaneous determination of free ligand (NVS001) and cold ligand (175Lu-NVS001) in rat and dog plasma. Several unexpected technical challenges in relation to LC-MS/MS of RLT molecules were successfully addressed. The challenges include poor assay sensitivity of the free ligand NVS001, formation of the free ligand (NVS001) with endogenous metal (e.g., potassium), Ga loss from the Ga-chelated internal standard during sample extraction and analysis, "instability" of the analytes at low concentrations, and inconsistent IS response in the extracted plasma samples. The methods were validated according to the current regulatory requirements in a dynamic range of 0.5-250 ng/mL for both the free and cold ligands using a 25 µL sample volume. The validated method was successfully implemented in sample analysis in support of regulated safety studies, with very good results from incurred sample reanalysis. The current LC-MS/MS workflow can be expanded to quantitative analysis of other RLTs in support of preclinical RLT drug development.


Subject(s)
Tandem Mass Spectrometry , Rats , Animals , Dogs , Chromatography, Liquid/methods , Ligands , Toxicokinetics , Tandem Mass Spectrometry/methods , Reproducibility of Results
13.
Molecules ; 28(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446886

ABSTRACT

Biochar is important for soil improvement, fertilizer innovation, and greenhouse gas reduction. In this paper, Mg-modified biochar was prepared from rice and corn straw and mixed with soil at a 1% (w/w) addition in an indoor soil simulation experiment to study the effect of Mg-modified biochar on the chemical properties of acidic soil. The results showed that the addition of Mg-modified biochar reduced soil acidity and improved soil fertility. Compared with the control group, the Mg-modified biochar treatment significantly increased the concentrations of available potassium, available phosphorus, total phosphorus, organic carbon and exchangeable calcium and magnesium in the soil, and effectively increased the concentration of total nitrogen. Rice straw Mg-modified biochar treatment was more effective in increasing the soil-available potassium, available phosphorus, total phosphorus and exchangeable magnesium concentration, while corn straw Mg-modified biochar was more effective in increasing the soil organic carbon and exchangeable calcium concentration. In addition, the high pyrolysis temperature of Mg-modified biochar was more effective in promoting the soil-available potassium, available phosphorus and total nitrogen concentration, while the low pyrolysis temperature of Mg-modified biochar was more effective in promoting soil alkaline nitrogen, exchangeable calcium and magnesium.


Subject(s)
Oryza , Soil , Soil/chemistry , Carbon , Calcium , Magnesium , Charcoal/chemistry , Nitrogen/analysis , Acids , Phosphorus , Potassium , Oryza/chemistry
14.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175683

ABSTRACT

The wood of Michelia macclurei Dandy (MD) is an excellent material that is widely used in the furniture, handicraft, and construction industries. However, less research has been conducted on the chemical composition and biological activity of heartwood, which is the main valuable part of the wood. This study aimed to investigate the chemical composition and biological activities of the heartwood of Michelia macclurei Dandy (MDHW) and to confirm the active ingredients. Triple quadrupole gas chromatography-mass spectrometry (GC-MS) was used to characterize the volatile components of MDHW, while ultra-performance liquid chromatography-mass spectrometry was used to analyze the non-volatile components (UPLC-MS). The total reducing power, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assays, acetylcholinesterase and α-glucosidase inhibition assays, and an antimicrobial test of 4 gram bacteria were used to describe the in vitro bioactivities. The GC-MS analysis showed that the volatile components of MDHW were mainly fatty compounds and terpenoids, with sesquiterpenes and their derivatives dominating the terpene composition. ß-elemene was the main terpene component in the steam distillation (11.88%) and ultrasonic extraction (8.2%) methods. A total of 67 compounds, comprising 45 alkaloids, 9 flavonoids, 6 lignans, and others, were found by UPLC-MS analysis. The primary structural kinds of the non-volatile components were 35 isoquinoline alkaloids. Alkaloids were the predominant active constituent in all MDHW extracts, including crude extracts, alkaloid fractions, and non-alkaloid fractions. These extracts all demonstrate some biological effects in terms of antioxidant, enzyme inhibition, and bacterial inhibition. The findings of this study show that MDHW is abundant in chemical structure types, has great bioactivity assessment, and has the potential to be used to create natural antioxidants, products that postpone Alzheimer's disease and lower blood sugar levels and antibacterial agents.


Subject(s)
Antioxidants , Magnoliaceae , Antioxidants/chemistry , Chromatography, Liquid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Acetylcholinesterase , Tandem Mass Spectrometry , Enzyme Inhibitors/analysis , Terpenes/analysis , Bacteria
15.
Molecules ; 28(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37049682

ABSTRACT

Continuous innovation in artificially-induced agarwood technology is increasing the amount of agarwood and substantially alleviating shortages. Agarwood is widely utilized in perfumes and fragrances; however, it is unclear whether the overall pharmacological activity of induced agarwood can replace wild agarwood for medicinal use. In this study, the volatile components, total chromone content, and the differences in the overall activities of wild agarwood and induced agarwood, including the antioxidant, anti-acetylcholinesterase, and anti-glucosidase activity were all determined. The results indicated that both induced and wild agarwood's chemical makeup contains sesquiterpenes and 2-(2-phenylethyl)chromones. The total chromone content in generated agarwood can reach 82.96% of that in wild agarwood. Induced agarwood scavenged 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radicals and inhibited acetylcholinesterase activity and α-glucosidase activity with IC50 values of 0.1873 mg/mL, 0.0602 mg/mL, 0.0493 mg/mL, and 0.2119 mg/mL, respectively, reaching 80.89%, 93.52%, 93.52%, and 69.47% of that of wild agarwood, respectively. Accordingly, the results distinguished that induced agarwood has the potential to replace wild agarwood in future for use in medicine because it has a similar chemical makeup to wild agarwood and has comparable antioxidant, anti-acetylcholinesterase, and anti-glucosidase capabilities.


Subject(s)
Perfume , Sesquiterpenes , Thymelaeaceae , Antioxidants/pharmacology , Antioxidants/chemistry , Thymelaeaceae/chemistry , Chromones/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Molecular Structure
16.
Bioanalysis ; 15(3): 109-125, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36976931

ABSTRACT

Scientifically qualified LC-MS/MS methods are essential for the determination of small molecule drug candidates and/or their metabolite(s) in support of various non-regulated safety assessment and in vivo absorption, distribution, metabolism and excretion studies in preclinical development. This article outlines an effective method development workflow to fit for this purpose. The workflow features a 'universal' protein precipitation solvent for efficient sample extraction, a mobile phase additive for managing chromatographic resolution and addressing carryover and an internal standard cocktail to select the best analogue internal standard to track the analyte of interest in LC-MS/MS. In addition, good practices are recommended to prevent bioanalytical pitfalls due to instability, non-specific binding and dosing vehicle-induced matrix effect. Proper handling of non-liquid matrix is also discussed.


Subject(s)
Body Fluids , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods
17.
Molecules ; 27(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432077

ABSTRACT

The purpose of this study was to characterize and quantify the chemical constituents of heartwood and sapwood of Dalbergia oliveri extract in order to investigate the chemical components that determine the formation of heartwood's color. In this work, the types of pigments in heartwood and sapwood extract were analyzed using UV-Visible (UV) Spectrophotometer, and the main pigment components of heartwood and sapwood extract were identified and quantified using ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). The results showed that the difference in content of the main components between heartwood and sapwood of Dalbergia oliveri was slight, and the lignin structure between heartwood and sapwood is basically identical; flavonoid pigments were found to be the primary chromophoric components of heartwood and sapwood extract. However, a total of 21 flavonoids were identified in heartwood and sapwood, of which the unique substances to heartwood were vitexin, isorhamnetin, and pelargonidin, and the content of isoliquiritigenin, formononetin, and biochanin A were 253, 37, and 583 times higher in the heartwood than in the sapwood, respectively, which could be the main pigment components affecting the significant color difference between heartwood and sapwood of Dalbergia oliveri. These results will provide a foundation for revealing the underlying mechanism of color difference between heartwood and sapwood and provide a theoretical basis for wood coloring.


Subject(s)
Dalbergia , Wood , Flavonoids/analysis , Lignin/analysis , Plant Extracts/analysis , Wood/chemistry
18.
Bioanalysis ; 14(6): 357-368, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35234045

ABSTRACT

Aim: To report the development and validation of an LC-MS/MS method for the simultaneous determination of unconjugated payload DM4 and its metabolite S-methyl-DM4 in human plasma. Methodology: A workflow of protein precipitation followed by reduction and solid phase extraction was employed to remove antibody-maytansinoid conjugates from plasma matrix, release DM4 from endogenous conjugates, and generate a clean sample extract for analysis, respectively. Sodium adduct species of both analytes were selected for multiple reaction monitoring to meet the assay sensitivity requirement in liquid chromatography with tandem mass spectrometry. Conclusion: The method was fully validated for a dynamic range of 0.100-50.0 ng/ml for both analytes along with desired stability and acceptable incurred sample reanalysis.


Subject(s)
Immunoconjugates/blood , Maytansine/blood , Chromatography, Liquid , Humans , Immunoconjugates/chemistry , Immunoconjugates/metabolism , Maytansine/analogs & derivatives , Maytansine/metabolism , Tandem Mass Spectrometry
19.
Polymers (Basel) ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36616374

ABSTRACT

In this paper, a surface self-cleaning wood was obtained by loading Bi2O3-doped silica-titanium composite film on the surface of wood by the sol-gel method. The effects of different Bi doping amounts on the structure and photocatalytic properties of the modified wood were investigated. The doping of Bi2O3 inhibited the growth of TiO2 crystals and the phase transition from anatase to rutile. In addition, Bi2O3 could improve the photocatalytic activity of the composite film by appropriately reducing the grain size of TiO2 and increasing the crystallinity of TiO2. Furthermore, doping with Bi2O3 shifted the absorption wavelength of the wood samples back into the visible range, indicating that the increase in Bi content favoured light absorption. The wood samples loaded with Bi2O3-doped Si-Ti composite membranes had the best photocatalytic activity and the highest reaction rate when n (Ti):n (Bi) = 1:0.015. Degradation rates of 96.0% and 94.0% could be achieved for rhodamine B and gaseous formaldehyde, respectively. It can be seen that wood samples loaded with Bi2O3-doped Si-Ti composite films on the surface exhibit excellent photocatalytic activity against both gaseous and liquid pollutants.

20.
Bioanalysis ; 13(12): 1001-1010, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34081547

ABSTRACT

With decommissioning of internal regulated bioanalytical (BA) and toxicokinetic (TK) capabilities, Novartis has relied on external service providers (ESPs) for all nonclinical LC-MS BA and majority of the associated TK work since 2017. This paper outlines an integrated outsourcing practice of the Novartis nonclinical LC-MS BA/TK group, which covers the roles and responsibilities of Novartis nonclinical LC-MS BA/TK expert scientific monitors, selection of ESPs for Novartis nonclinical LC-MS BA/TK studies, qualification of BA/TK ESPs, study conduct and completion, ESP oversight and evaluation, issue mitigation, and future perspectives.


Subject(s)
Chromatography, Liquid , Toxicokinetics , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...