Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 35(2): 102209, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38831900

ABSTRACT

Retinal ischemia is a common clinical event leading to retinal ganglion cell (RGC) death, resulting in irreversible vision loss. In the retina, glia-neuron communication is crucial for multiple functions and homeostasis. Extracellular vesicles, notably exosomes, play a critical role. The functions and mechanisms of retinal astrocyte-secreted exosomes remain unclear. Here, we isolated astrocyte-derived exosomes under hypoxia or normoxia and explored their role in an in vivo retinal ischemia-reperfusion (RIR) model. We found that hypoxia triggered astrocytes to produce a significantly increased number of exosomes, which could be internalized by RGCs in vivo or in vitro. Also, in the RIR model, the hypoxia-induced exosomes ameliorated the RIR injury and suppressed the RGC apoptosis. Furthermore, microRNA sequencing of retinal astrocyte-secreted exosomes revealed different patterns of exosomal miRNAs under hypoxia, particularly enriched with miR-329-5p. We verified that miR-329-5p was specifically bound to mitogen-activated protein kinase 8 mRNA, and subsequent JNK-pathway molecules were downregulated. We anticipated that the miR-329-5p/JNK pathway is a key to suppressing RGC apoptosis and preventing RIR injury. Such findings provided insights into the therapeutic potential of hypoxia-induced astrocyte-secreted exosomes and the miR-329-5p for treating retina ischemic diseases.

2.
Clin Transl Med ; 13(8): e1383, 2023 08.
Article in English | MEDLINE | ID: mdl-37598400

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD), particularly wet AMD characterised by choroidal neovascularization (CNV), is a leading cause of vision loss in the elderly. The hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway contributes to CNV pathogenesis. Previous gene editing research indicated that disrupting these genes in retinal pigment epithelial cells could have a preventive effect on CNV progression. However, no studies have yet been conducted using gene editing to disrupt VEGF signalling after CNV induction for therapeutic validation, which is critical to the clinical application of wet AMD gene editing therapies. METHOD: Here, we employed the single-adeno-associated virus-mediated Nme2 Cas9 to disrupt key molecules in VEGF signalling, Hif1α, Vegfa and Vegfr2 after inducing CNV and estimated their therapeutic effects. RESULTS: We found that Nme2 Cas9 made efficient editing in target genes up to 71.8% post 11 days in vivo. And only Nme2 Cas9-Vegfa treatment during the early stage of CNV development reduced the CNV lesion area by 49.5%, compared to the negative control, while Nme2 Cas9-Hif1α or Nme2 Cas9-Vegfr2 treatment did not show therapeutic effect. Besides, no off-target effects were observed in Nme2 Cas9-mediated gene editing in vivo. CONCLUSIONS: This study provides proof-of-concept possibility of employing Nme2 Cas9 for potential anti-angiogenesis therapy in wet AMD.


Subject(s)
Macular Degeneration , Vascular Endothelial Growth Factor A , Aged , Humans , Vascular Endothelial Growth Factor A/genetics , CRISPR-Cas Systems/genetics , Macular Degeneration/genetics , Macular Degeneration/therapy , Immunotherapy , Gene Editing
3.
J Neuroinflammation ; 19(1): 315, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36577999

ABSTRACT

BACKGROUND: Dysregulated activation of the inflammasome is involved in various human diseases including acute cerebral ischemia, multiple sclerosis and sepsis. Though many inflammasome inhibitors targeting NOD-like receptor protein 3 (NLRP3) have been designed and developed, none of the inhibitors are clinically available. Growing evidence suggests that targeting apoptosis-associated speck-like protein containing a CARD (ASC), the oligomerization of which is the key event for the assembly of inflammasome, may be another promising therapeutic strategy. Lonidamine (LND), a small-molecule inhibitor of glycolysis used as an antineoplastic drug, has been evidenced to have anti-inflammation effects. However, its anti-inflammatory mechanism is still largely unknown. METHODS: Middle cerebral artery occlusion (MCAO), experimental autoimmune encephalomyelitis (EAE) and LPS-induced sepsis mice models were constructed to investigate the therapeutic and anti-inflammasome effects of LND. The inhibition of inflammasome activation and ASC oligomerization by LND was evaluated using western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) in murine bone marrow-derived macrophages (BMDMs). Direct binding of LND with ASC was assessed using molecular mock docking, surface plasmon resonance (SPR), and drug affinity responsive target stability (DARTS). RESULTS: Here, we find that LND strongly attenuates the inflammatory injury in experimental models of inflammasome-associated diseases including autoimmune disease-multiple sclerosis (MS), ischemic stroke and sepsis. Moreover, LND blocks diverse types of inflammasome activation independent of its known targets including hexokinase 2 (HK2). We further reveal that LND directly binds to the inflammasome ligand ASC and inhibits its oligomerization. CONCLUSIONS: Taken together, our results identify LND as a broad-spectrum inflammasome inhibitor by directly targeting ASC, providing a novel candidate drug for the treatment of inflammasome-driven diseases in clinic.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Sepsis , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy
4.
Front Cell Dev Biol ; 9: 669696, 2021.
Article in English | MEDLINE | ID: mdl-34095138

ABSTRACT

Retinal ischemia is a common pathological event that can result in retinal ganglion cell (RGC) death and irreversible vision loss. The pathogenic mechanisms linking retinal ischemia to RGC loss and visual deficits are uncertain, which has greatly hampered the development of effective treatments. It is increasingly recognized that pyroptosis of microglia contributes to the indirect inflammatory death of RGCs. In this study, we report a regulatory NOD-like receptor, NOD-, LRR- and CARD-containing 5 (NLRC5), as a key regulator on microglial pyroptosis and the retinal ischemia process. Through an in-depth analysis of our recently published transcriptome data, we found that NLRC5 was significantly up-regulated in retina during ischemia-reperfusion injury, which were further confirmed by subsequent detection of mRNA and protein level. We further found that NLRC5 was upregulated in retinal microglia during ischemia, while NLRC5 knockdown significantly ameliorated retinal ischemic damage and RGC death. Mechanistically, we revealed that knockdown of NLRC5 markedly suppressed gasdermin D (GSDMD) cleavage and activation of interleukin-1ß (IL-1ß) and caspase-3, indicating that NLRC5 promotes both microglial pyroptosis and apoptosis. Notably, we found that NLRC5 directly bound to NLRP3 and NLRC4 in inflammasomes to cooperatively drive microglial pyroptosis and apoptosis mediating retinal ischemic damage. Overall, these findings reveal a previously unidentified key contribution of NLRC5 signaling to microglial pyroptosis under ischemia or hypoxia conditions. This NLRC5-dependent pathway may be a novel therapeutic target for treatment of ischemic retinopathy.

SELECTION OF CITATIONS
SEARCH DETAIL
...