Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(18): 5008-5015, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38695764

ABSTRACT

Second-harmonic generation (SHG) has rapidly advanced with the miniaturization of on-chip devices and has found many applications, including optical frequency conversion, nonlinear imaging, and quantum technology. However, owing to the obvious phase-matching constraints involved in nonlinear optical interactions in bulk crystals and the decrease in the length and strength of nonlinear interactions in nanophotonic and surface/interface systems, improving the SHG efficiency and manipulating its optical properties at the nanoscale are challenging tasks. Herein, a monocrystalline silver microplate and nanocube-coupled nanocavity with double-resonance plasmonic modes and an ultrasmall gap were constructed, resulting in efficiently enhanced SHG. In particular, the SHG from the silver microplate (111) is polarization-dependent, and the anisotropy of the SHG in the plasmonic nanocavity can be further controlled via the superposition of symmetries at the interface and plasmonic waveguide-cavity modes. The interfacial SHG provides technology for developing lattice surface atomic arrangement and nanostructure rapid characterization, nonlinear light sources, and on-chip nonlinear nanophotonic devices.

2.
Phys Chem Chem Phys ; 25(35): 23879-23884, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37642273

ABSTRACT

The electronic properties of hydrogen-terminated biphenylene (BP) segments of different sizes on the sub-nanoscale are explored using density functional theory, and the size dependence of the energy gap is evaluated using a structural parameter as a function of the bond lengths and the electronic density contributions. More importantly, the energy gap is observed to decrease linearly with the reduced hydrogen-to-carbon ratio of the corresponding structures, while the decrease-rate undergoes a diminution of four times at a gap of 0.5 eV due to the transformed distribution of the lowest unoccupied molecular orbital. The results give a deep insight into the size-tunable energy gaps of BPs and provide a possibility for the preparation of hydrogen-terminated carbon materials with a desirable energy gap.

3.
Nanoscale ; 15(29): 12333-12339, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37434560

ABSTRACT

Rare-earth doped yttrium orthosilicate (Y2SiO5) crystals have many important applications due to their unique optical and luminescence properties. However, the indispensable high temperature treatment and long period reaction tend to greatly reduce the preparation efficiency. Here, the plasmonic photothermal effect of Au nanoparticles has been properly applied to realize in situ transformation from a composite structure NaYF4:Eu3+@SiO2@Au into a single monoclinic X1-type Y2SiO5:Eu3+-Au particle. It is worth mentioning that the X1-type Y2SiO5-Au particle can be well obtained within about 10 seconds when the thickness of the SiO2 shell is about 15 nm, which is unattainable with conventional approaches. Moreover, the particle turns out to possess good crystallinity, controllable morphology, and significantly improved luminescence performance. This study not only provides a brand-new path for the preparation of yttrium silicate crystals but also further extends the application of surface plasmons in the field of catalytic luminescent materials.

4.
J Phys Chem Lett ; 14(25): 5748-5753, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37319379

ABSTRACT

The atomic-scale mechanism of plasmon-mediated H2 dissociation on gold nanoclusters is investigated using time-dependent density functional theory. The position relationship between the nanocluster and H2 has a strong influence on the reaction rate. When the hydrogen molecule is located in the interstitial center of the plasmonic dimer, the hot spot here has a great field enhancement, which can promote dissociation effectively. The change in the molecular position results in symmetry breaking, and the molecular dissociation is inhibited. For the asymmetric structure, direct charge transfer from the gold cluster to the antibonding state of the hydrogen molecule by plasmon decay makes a prominent contribution to the reaction. The results provide deep insights into the influence of structural symmetry on plasmon-assisted photocatalysis in the quantum regime.

5.
Nanomaterials (Basel) ; 13(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903785

ABSTRACT

The plasmonic photothermal effects of metal nanostructures have recently become a new priority of studies in the field of nano-optics. Controllable plasmonic nanostructures with a wide range of responses are crucial for effective photothermal effects and their applications. In this work, self-assembled aluminum nano-islands (Al NIs) with a thin alumina layer are designed as a plasmonic photothermal structure to achieve nanocrystal transformation via multi-wavelength excitation. The plasmonic photothermal effects can be controlled by the thickness of the Al2O3 and the intensity and wavelength of the laser illumination. In addition, Al NIs with an alumina layer have good photothermal conversion efficiency even in low temperature environments, and the efficiency will not decline significantly after storage in air for 3 months. Such an inexpensive Al/Al2O3 structure with a multi-wavelength response provides an efficient platform for rapid nanocrystal transformation and a potential application for the wide-band absorption of solar energy.

6.
J Phys Chem A ; 126(49): 9147-9153, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36469759

ABSTRACT

Chemical interaction between the tips and molecules is one of the main contributing mechanisms to tip-enhanced Raman spectroscopy (TERS). In this work, we calculate the TERS spectra of the biphenylene (BP) dimer at 13 nonequivalent tip sites by means of density functional theory and explore the influence of the TERS tip on vibrational mode characters and Raman intensity. The Raman intensity of the vibrational mode involving the antisymmetric stretching of tetra-rings is found to be specifically enhanced. We attribute this specific enhancement to the electronic sensitive atom vibrational character of the mode and infer that the vibrational strength of atoms can be tuned by the TERS tip. The results provide an intuitive interpretation on the effects of tip-induced electronic redistributions on specific vibrational modes in TERS and indicate the possibility to further improve the TERS resolution.

7.
Nanoscale ; 14(43): 16314-16320, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36305203

ABSTRACT

The preparation and modification of crystal structures in cryogenic environments with conventional methods is challenging, but it is essential for the development of composite materials, energy savings, and future human space exploration. Plasmon induced hot carriers and local thermal effects help to overcome the challenges of chemical reactions under extreme conditions, for which molecular reactions have attracted considerable research attention. In this work, the plasmon thermal effect enables fast and efficient nanocrystal transformation in cryogenic environments, which was previously unattainable with conventional heating methods. The transformation of NaYF4 nanocrystals on gold nanoparticle island films can be achieved even in a low temperature environment of 11 K. Compared with the structure with gold nanoparticles adhered to NaYF4 nanocrystals directly, the structure of gold nanoparticle island films with an Al2O3 layer offered better heat trapping properties, which allows the complete transformation to take place of NaYF4 nanocrystals into Y2O3 nanocrystals in low temperature environments. This work explores the potential of applying the photothermal effect of a plasmon to induce rapid transformation of nanocrystals in extreme environments and provides insight into the process of crystal transformation and growth.

8.
Nanomaterials (Basel) ; 12(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36079965

ABSTRACT

Noble metal nanostructures can produce the surface plasmon resonance under appropriate photoexcitation, which can be used to promote or facilitate chemical reactions, as well as photocatalytic materials, due to their strong plasmon resonance in the visible light region. In the current work, Ag/Au nanoislands (NIs) and Ag NIs/Au film composite systems were designed, and their thermocatalysis performance was investigated using luminescence of Eu3+ as a probe. Compared with Ag NIs, the catalytic efficiency and stability of surface plasmons of Ag/Au NIs and Ag NIs/Au film composite systems were greatly improved. It was found that the metal NIs can also generate strong localized heat at low temperature environment, enabling the transition of NaYF4:Eu3+ to Y2O3: Eu3+, and anti-oxidation was realized by depositing gold on the surface of silver, resulting in the relative stability of the constructed complex.

9.
Nanomaterials (Basel) ; 12(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36014728

ABSTRACT

Oxide-supported Ag nanoparticles have been widely reported as a good approach to improve the stability and reduce the cost of photocatalysts. In this work, a Ag-nanoparticles-doped porous ZnO photocatalyst was prepared by using metal-organic frameworks as a sacrificial precursor and the catalytic activity over 4-nitrophenol was determined. The Ag-nanoparticles-doped porous ZnO heterostructure was evaluated by UV, XRD, and FETEM, and the catalytic rate constant was calculated by the change in absorbance value at 400 nm of 4-nitrophenol. The photocatalyst with a heterogeneous structure is visible, light-responsive, and beneficial to accelerating the catalytic rate. Under visible light irradiation, the heterostructure showed excellent catalytic activity over 4-nitrophenol due to the hot electrons induced by the localized surface plasmon resonance of Ag nanoparticles. Additionally, the catalytic rates of 4 nm/30 nm Ag nanoparticles and porous/nonporous ZnO were compared. We found that the as-prepared Ag-nanoparticles-doped porous ZnO heterostructure catalyst showed enhanced catalytic performance due to the synergetic effect of Ag nanoparticles and porous ZnO. This study provides a novel heterostructure photocatalyst with potential applications in solar energy and pollutant disposal.

10.
Front Chem ; 9: 699548, 2021.
Article in English | MEDLINE | ID: mdl-34307300

ABSTRACT

Plasmonic nanostructures with sharp tips are widely used for optical signal enhancement because of their strong light-confining abilities. These structures have a wide range of potential applications, for example, in sensing, bioimaging, and surface-enhanced Raman scattering. Au nanoparticles, which are important plasmonic materials with high photothermal conversion efficiencies in the visible to near-infrared region, have contributed greatly to the development of photothermal catalysis. However, the existing methods for synthesizing nanostructures with tips need the assistance of poly(vinylpyrrolidone), thiols, or biomolecules. This greatly hinders signal detection because of stubborn residues. Here, we propose an efficient binary surfactant-mediated method for controlling nanotip growth on Au nanoparticle surfaces. This avoids the effects of surfactants and can be used with other Au nanostructures. The Au architecture tip growth process can be controlled well by adjusting the ratio of hexadecyltrimethylammonium bromide to hexadecyltrimethylammonium chloride. This is due to the different levels of attraction between Br-/Cl- and Au3+ ions. The surface-enhanced Raman scattering and catalytic abilities of the synthesized nanoparticles with tips were evaluated by electromagnetic simulation and photothermal catalysis experiments (with 4-nitrothiophenol). The results show good potential for use in surface-enhanced Raman scattering applications. This method provides a new strategy for designing plasmonic photothermal nanostructures for chemical and biological applications.

11.
Nanoscale ; 13(8): 4585-4591, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33605960

ABSTRACT

Photothermal utilization is an important approach for sustaining global ecological balance. Due to the enhancement of light absorption through surface plasmon resonance, silver or gold nanostructures can be used as efficient photothermal heat sources in visible and near-infrared regions. Herein, a heat-trapping system of self-assembled gold nanoislands with a thin Al2O3 layer is designed to significantly enhance the photothermal effect, which can contribute to a fast crystal transformation. Compared with pure gold nanoislands, an approximately 10-fold enhancement of the photothermal conversion efficiency is observed by using the heat-trapping layer, which results from enhanced light absorption and efficient heat utilization. With the heat-trapping layer, a relatively high and stable photothermal conversion efficiency is realized even at low temperature, and the thermal stability of the plasmonic nanostructure is also observed to improve, especially for silver nanoislands used in air. These results provide a strong additional support for the further development of photothermal applications and offer an efficient pathway for the thermal manipulation of plasmons at the nanoscale.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 231: 118117, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32066077

ABSTRACT

The development of new structures allows two-photon coherent anti-Stokes Raman scattering (TPCARS) to be strongly enhanced by multiple surface plasmon resonances (MSPRs). In this paper, plasmonic structure consisting of two Ag nanorods is designed and the enhancement of TPCARS is investigated. By properly selecting designing structure parameters, strong MSPRs peaks at 1020 nm and 505 nm are obtained, which can enhance the TPCARS signal based on the frequency match of the fundamental frequency and frequency doubling. The enhancement factor of TPCARS can reach as high as 3.66 × 1028 with significant electric field enhancements under appropriate selection of system parameters. Furthermore, the two-photon process can be controlled at different optical frequencies by changing the geometric parameters of Ag nanorods. The new scheme advanced in this work can help to achieve single molecule level of CARS, and may have a potential to increase the intensity and resolution of nonlinear optical imaging.

13.
Nanoscale ; 12(16): 8768-8774, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32101225

ABSTRACT

Plasmonic metal nanoparticles have the ability to harvest visible light and cause effective energy conversion, and they are considered as promising catalysts to drive chemical reactions. Although plasmonic catalysis has been widely used to mediate the reaction of organic molecules, the mechanism of contribution of thermal and hot carriers remains unclear. The catalysis of hot carriers is normally proposed as the dominant role of plasmonic catalysis, while the contribution of plasmonic thermal effects is often ignored, since the molecules on the metal surface are unstable at high temperatures. Here, plasmon catalytic nanocrystal transformation including oxidation reaction and optimization of the crystal structure is employed to investigate the plasmonic contributions of hot electron and thermal effects in plasmonic catalysis. It is found that the transformation rate and the corresponding product are very different with and without the assistance of hot electron catalysis. The thermal effect plays a dominant role in plasmon-catalyzed material transformation, and hot electrons can promote the oxidation reaction by facilitating the generation of active oxygen. The investigation provides insight into the specific role of hot electron and thermal effects in plasmonic catalysis, which is critically important for exploiting the highly localized fast plasmonic thermal effect and for designing energy-efficient plasmonic catalysts.

14.
Small ; 15(34): e1901286, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31240871

ABSTRACT

Single crystal nanomaterials are very important for the fundamental investigation and application of luminescence. However, a very critical growth condition or high temperature treatment is always required for their preparation. Here, an easy and rapid in situ achievement of a single crystal luminescent material is realized by taking advantage of plasmon-induced thermal and catalysis effects. With the assistance of localized surface plasmon resonance of Au nanoparticles, polycrystalline NaYF4 transforms to single crystal Y2 O3 in tens of milliseconds, resulting in remarkable improvement of luminescence emission. It is important to point out that the single crystal transformation is also achieved even at a very low temperature, which is impossible with conventional approaches. Such a convenient and efficient plasmon assisted scheme provides a new technology for the rapid achievement of single crystal materials and extends the application of surface plasmon to a much broader field.

15.
Nat Commun ; 7: 11279, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27075831

ABSTRACT

Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population. These observations facilitate a detailed understanding of molecule formation in the lattice. Moreover, the interplay of tunnelling and interaction of fermions and bosons provides a controllable platform to study Bose-Fermi Hubbard dynamics. Additionally, we can probe the distribution of the atomic gases in the lattice by measuring the inelastic loss of doublons. These techniques realize tools that are generically applicable to studying the complex dynamics of atomic mixtures in optical lattices.

16.
Phys Rev Lett ; 109(9): 095301, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-23002843

ABSTRACT

In this Letter, we report the first experimental realization and investigation of a spin-orbit coupled Fermi gas. Both spin dephasing in spin dynamics and momentum distribution asymmetry of the equilibrium state are observed as hallmarks of spin-orbit coupling in a Fermi gas. The single particle dispersion is mapped out by using momentum-resolved radio-frequency spectroscopy. From momentum distribution and momentum-resolved radio-frequency spectroscopy, we observe the change of fermion population in different helicity branches consistent with a finite temperature calculation, which indicates that a Lifshitz transition of the Fermi surface topology change can be found by further cooling the system.

17.
Phys Rev Lett ; 106(21): 210401, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21699275

ABSTRACT

We demonstrate collective atomic recoil motion with a dilute, ultracold, degenerate fermion gas in a single spin state. By utilizing an adiabatically decompressed magnetic trap with an aspect ratio different from that of the initial trap, a momentum-squeezed fermion cloud is achieved. With a single pump pulse of the proper polarization, we observe, for the first time, multiple wave-mixing processes that result in distinct collective atomic recoil motion modes in a degenerate fermion cloud. Contrary to the case with Bose condensates, no pump-laser detuning asymmetry is present.

18.
Opt Express ; 18(2): 1649-56, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20173992

ABSTRACT

We have studied the locomotion track of (87)Rb Bose-Einstein condensate during decompressing the trap into the center of the glass cell in a quadrupole-Ioffe configuration trap. In order to change the position of the BEC, the current in the quadrupole coils is reduced while the current in the Ioffe coil keeps constant. Because of the strongly reduced trap frequencies of the moved trap, the BEC considerably sags down due to the gravity. Thus an inflexion point exists in the process of moving BEC. When rubidium atoms go over the inflexion point, they cannot keep in balance under the gravity and the force provided by a magnetic field, and flow downward and towards Ioffe coil. By utilizing this effect, the trapped atoms with the spin state |F = 2,mF = 1>, which are left over in the BEC, can be separated from the BEC of |F = 2,mF = 2> state.


Subject(s)
Models, Chemical , Rubidium Radioisotopes/chemistry , Computer Simulation , Electromagnetic Fields , Quantum Theory , Scattering, Radiation , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...