Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 473: 134691, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788584

ABSTRACT

Soot nanoparticles (SNPs) are black carbon prevalent in atmospheric environment with significant impacts on public health, leading to neurodegenerative diseases including development of Parkinson's disease (PD). This study investigated the effects of SNPs exposure on PD symptoms, employing both in vivo and in vitro PD models. In the in vivo experiments, animal behavior assessments showed that SNPs exposure exacerbated motor and cognitive impairments in PD mice. Molecular biology techniques further unveiled that SNPs aggravated degeneration of dopaminergic neurons. In vitro experiments revealed that SNPs exposure intensified ferroptosis of PD cells by increasing reactive oxygen species and iron ion levels, while reducing glutathione levels and mitochondrial membrane potential. Sequencing tests indicated elevated N6-methyladenosine (m6A) alteration of the ferroptosis-related protein, acyl-CoA synthetase long chain family member 4 (ACSL4). This study demonstrates that SNPs may exacerbate the onset and progression of PD by recruiting YTH domain-containing family protein 1 (YTHDF1) protein, enhancing m6A methylation in the ACSL4 5'UTR, amplifying ACSL4 protein expression, and accelerating the ferroptosis process in dopaminergic neurons. These molecular mechanisms underlying SNPs exacerbation of PD development may provide crucial insights for formulating environmental safety regulations and potential therapeutic strategies addressing PD in populations residing in regions with varied air quality.


Subject(s)
Adenosine , Dopaminergic Neurons , Ferroptosis , Mice, Inbred C57BL , Nanoparticles , Parkinson Disease , Animals , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Ferroptosis/drug effects , Adenosine/analogs & derivatives , Parkinson Disease/genetics , Parkinson Disease/metabolism , Nanoparticles/toxicity , Nanoparticles/chemistry , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Male , Methylation/drug effects , Mice , Reactive Oxygen Species/metabolism , Humans , RNA , RNA Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...