Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Publication year range
1.
Cell Rep ; 42(1): 112017, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36662622

ABSTRACT

Chronic pain is one of the most significant medical problems throughout the world. Recent evidence has confirmed the hippocampus as an active modulator of pain chronicity, but the underlying mechanisms remain unclear. Using in vivo electrophysiology, we identify a neural ensemble in the ventral hippocampal CA1 (vCA1) that shows inhibitory responses to noxious but not innocuous stimuli. Following peripheral inflammation, this ensemble becomes responsive to innocuous stimuli, representing hypersensitivity. Mimicking the inhibition of vCA1 neurons using chemogenetics induces chronic pain-like behaviors in naive mice, whereas activating vCA1 neurons in mice with peripheral inflammation results in a reduction of pain-related behaviors. Pathway-specific manipulation of vCA1 projections to basolateral amygdala (BLA) and infralimbic cortex (IL) shows that these pathways are differentially involved in pain modulation at different temporal stages of chronic inflammatory pain. These results confirm a crucial role of the vCA1 and its circuits in modulating the development of chronic pain.


Subject(s)
CA1 Region, Hippocampal , Chronic Pain , Mice , Animals , CA1 Region, Hippocampal/physiology , Chronic Pain/metabolism , Hippocampus/metabolism , Neurons/metabolism , Inflammation/metabolism , Neural Pathways/physiology
2.
J Physiol ; 597(13): 3363-3387, 2019 07.
Article in English | MEDLINE | ID: mdl-31049961

ABSTRACT

KEY POINTS: Activation of axonal dopamine D2 receptors (D2Rs) increases action potential (AP) threshold, and thus decreases neuronal excitability in layer II stellate cells of medial entorhinal cortex. Endogenous dopamine release increases the AP threshold of stellate cells by activating D2Rs. Activation of D2Rs shifts the activation curve of T-type Ca2+ channels in a positive direction in a protein kinase A-dependent manner. Immunofluorescence staining reveals the presence of T-type Ca2+ channels and D2Rs in the axon initial segments (AISs). This research makes the pioneering discovery of D2R-induced AP threshold plasticity in AISs of stellate cells. The findings are likely to have significant implications for understanding the cellular processes by which dopamine influences neuronal intrinsic excitability. ABSTRACT: Stellate cells in the medial entorhinal cortex (MEC) are considered to constitute the largest population of grid cells, which provide spatial representation to support animal estimation of location. Although dopaminergic fibres from the ventral tegmental area and substantia nigra pars compacta innervate the majority of the cortex, including the MEC, little is known about how dopamine modulates the function of MEC stellate cells. Because dopamine D2 receptors (D2Rs) are involved in spatial cognition and MEC contains high levels of D2Rs, we investigated how D2R activation modulates the neuronal intrinsic excitability of stellate cells. Electrophysiological recordings, optogenetics and molecular biology experiments were performed to investigate the mechanism in mice. Activation of axonal D2Rs, not dendritic or somatic D2Rs, elevated the action potential (AP) threshold and decreased the intrinsic excitability of stellate cells, which was caused by shifting rightward the activation properties of T-type Ca2+ channels in a D2R-protein kinase A-dependent manner without affecting their steady-state inactivation curve. In support, immunofluorescence assays revealed colocalization of D2Rs and Cav 3.2 calcium channels within the axon initial segment. These findings are likely to have significant implications for understanding the cellular processes by which dopamine influences neuronal excitability and they may also be applicable to other hippocampal and cortical regions as dopaminergic fibres innervate wide brain regions. Taken together, these findings provide a novel cellular mechanism by which D2Rs modulate AP threshold of stellate cells through T-type Ca2+ channels in MEC, indicating that D2Rs of MEC play a vital role in modulating the information processing of stellate cells.


Subject(s)
Action Potentials/physiology , Calcium Channels, T-Type/metabolism , Entorhinal Cortex/metabolism , Receptors, Dopamine D2/metabolism , Animals , Astrocytes/metabolism , Astrocytes/physiology , Dopamine/metabolism , Entorhinal Cortex/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology
3.
Sheng Li Xue Bao ; 69(5): 703-714, 2017 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-29063118

ABSTRACT

DREAM (downstream regulatory element antagonist modulator), Calsenilin and KChIP3 (potassium channel interacting protein 3) belong to the neuronal calcium sensor (NCS) superfamily, which transduces the intracellular calcium signaling into a variety of activities. They are encoded by the same gene locus, but have distinct subcellular locations. DREAM was first found to interact with DRE (downstream regulatory element) site in the vicinity of the promoter of prodynorphin gene to suppress gene transcription. Calcium can disassemble this interaction by binding reversibly to DREAM protein on its four EF-hand motifs. Apart from having calcium dependent DRE site binding, DREAM can also interact with other transcription factors, such as cAMP responsive element binding protein (CREB), CREB-binding protein (CBP) and cAMP responsive element modulator (CREM), by this concerted actions, DREAM extends the gene pool under its control. DREAM is predominantly expressed in central nervous system with its highest level in cerebellum, and accumulating evidence demonstrated that DREAM might play important roles in pain sensitivity. Novel findings have shown that DREAM is also involved in learning and memory processes, Alzheimer's disease and stroke. This mini-review provides a brief introduction of its discovery history and protein structure properties, focusing on the mechanism of DREAM nuclear translocation and gene transcription regulation functions.


Subject(s)
Gene Expression Regulation , Kv Channel-Interacting Proteins/physiology , Repressor Proteins/physiology , Animals , Calcium Signaling/physiology , Humans , Kv Channel-Interacting Proteins/genetics , Pain Threshold , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL