Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): 1191-1200, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37706772

ABSTRACT

This paper focuses on a dynamic star image acquisition and matching method for space situational awareness, which can quickly search for widely distributed resident space objects. First, the optical circular rotation imaging method performed by a single space camera is proposed to obtain a series of star images. And then, the image matching method based on graph neural networks is proposed for generating a wide observation star image. Experiment results show that compared with baseline matching algorithms, the matching accuracy and matching precision of the proposed algorithm are improved significantly.

2.
Biomed Res Int ; 2020: 8851437, 2020.
Article in English | MEDLINE | ID: mdl-33178836

ABSTRACT

BACKGROUND: Glucosamine-Phosphate N-Acetyltransferase 1 (GNPNAT1) is a critical enzyme in the biosynthesis of uridine diphosphate-N-acetylglucosamine. It has many important functions, such as protein binding, monosaccharide binding, and embryonic development and growth. However, the role of GNPNAT1 in lung adenocarcinoma (LUAD) remains unclear. METHODS: In this study, we explored the expression pattern and prognostic value of GNPNAT1 in LUAD across TCGA and GEO databases and assessed its independent prognostic value via Cox analysis. LinkedOmics and GEPIA2 were applied to investigate coexpression and functional networks associated with GNPNAT1. The TIMER web tool was deployed to assess the correlation between GNPNAT1 and the main six types of tumor-infiltrating immune cells. Besides, the correlations between GNPNAT1 and the LUAD common genetic mutations, TMB, and immune signatures were examined. RESULTS: GNPNAT1 was validated upregulated in tumor tissues in TCGA-LUAD and GEO cohorts. Moreover, in both TCGA and GEO cohorts, high GNPNAT1 expression was found to be associated with poor overall survival. Cox analysis showed that high GNPNAT1 expression was an independent risk factor for LUAD. Functional network analysis suggested that GNPNAT1 regulates cell cycle, ribosome, proteasome, RNA transport, and spliceosome signaling through pathways involving multiple cancer-related kinases and E2F family. In addition, GNPNAT1 correlated with infiltrating levels of B cells, CD4+ T cells, and dendritic cells. B cells and dendritic cells could predict the outcome of LUAD, and B cells and CD4+ T cells were significant independent risk factors. The TMB and mutations of KRAS, EGFR, STK11, and TP53 were correlated with GNPNAT1. At last, the correlation analysis showed GNPNAT1 correlated with most of the immune signatures we performed. CONCLUSION: Our findings showed that GNPNAT1 was correlated to the prognosis and immune infiltration of LUAD. In particular, the tight relationship between GNPNAT1 and B cell marker genes may be the epicenter of the immune response and one of the key factors affecting the prognosis. Our findings laid the foundation for further research on the immunomodulatory role of GNPNAT1 in LUAD.


Subject(s)
Adenocarcinoma of Lung/enzymology , Glucosamine 6-Phosphate N-Acetyltransferase/metabolism , Lung Neoplasms/enzymology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Aged , B-Lymphocytes/immunology , Biomarkers, Tumor/genetics , Cohort Studies , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Male , Middle Aged , Multivariate Analysis , Mutation/genetics , Neoplasm Proteins/genetics , Prognosis , Risk Factors , Survival Analysis
3.
Front Mol Biosci ; 7: 571641, 2020.
Article in English | MEDLINE | ID: mdl-33102522

ABSTRACT

BACKGROUND: Lung cancer has become the most common cancer type and caused the most cancer deaths. Lung adenocarcinoma (LUAD) is one of the major types of lung cancer. Accumulating evidence suggests the tumor microenvironment is correlated with the tumor progress and the patient's outcome. This study aimed to establish a gene signature based on tumor microenvironment that can predict patients' outcomes for LUAD. METHODS: Dataset TCGA-LUAD, downloaded from the TCGA portal, were taken as training cohort, and dataset GSE72094, obtained from the GEO database, was set as validation cohort. In the training cohort, ESTIMATE algorithm was applied to find intersection differentially expressed genes (DEGs) among tumor microenvironment. Kaplan-Meier analysis and univariate Cox regression model were performed on intersection DEGs to preliminarily screen prognostic genes. Besides, the LASSO Cox regression model was implemented to build a multi-gene signature, which was then validated in the validation cohorts through Kaplan-Meier, Cox, and receiver operating characteristic curve (ROC) analyses. In addition, the correlation between tumor mutational burden (TMB) and risk score was evaluated by Spearman test. GSEA and immune infiltrating analyses were conducted for understanding function annotation and the role of the signature in the tumor microenvironment. RESULTS: An eight-gene signature was built, and it was examined by Kaplan-Meier analysis, revealing that a significant overall survival difference was seen. The eight-gene signature was further proven to be independent of other clinico-pathologic parameters via the Cox regression analyses. Moreover, the ROC analysis demonstrated that this signature owned a better predictive power of LUAD prognosis. The eight-gene signature was correlated with TMB. Furthermore, GSEA and immune infiltrating analyses showed that the exact pathways related to the characteristics of eight-genes signature, and identified the vital roles of Mast cells resting and B cells naive in the prognosis of the eight-gene signature. CONCLUSION: Identifying the eight-gene signature (INSL4, SCN7A, STAP1, P2RX1, IKZF3, MS4A1, KLRB1, and ACSM5) could accurately identify patients' prognosis and had close interactions with Mast cells resting and B cells naive, which may provide insight into personalized prognosis prediction and new therapies for LUAD patients.

4.
Epidemiol Infect ; 149: e7, 2020 12 28.
Article in English | MEDLINE | ID: mdl-33436128

ABSTRACT

With the rapid rise in the prevalence of non-tuberculous mycobacteria (NTM) diseases across the world, the microbiological diagnosis of NTM isolates is becoming increasingly important for the diagnosis and treatment of NTM disease. In this study, the clinical presentation, species distribution and drug susceptibility of patients with NTM disease visiting the Chongqing Public Health Medical Centre during March 2016-April 2019 were retrospectively analysed. Among the 146 patients with NTM disease, eight NTM species (complex) were identified. The predominant NTM species in these patients were identified to be Mycobacterium abscessus complex (53, 36.3%), M. intracellulare (38, 26%) and M. fortuitum (17, 11.7%). In addition, two or more species were isolated from 7.5% of the patients. Pulmonary NTM disease (142, 97.3%) showed the highest prevalence among the patients. It was observed that 40.1% of the patients with pulmonary NTM disease had chronic pulmonary obstructive disease and bronchiectasis, while 22.5% had prior tuberculosis. Male patients showed more association with the conditions of cough and haemoptysis than the female patients. In an in vitro antimicrobial susceptibility testing, most of the species showed susceptibility to linezolid, amikacin and clarithromycin, while M. fortuitum exhibited low susceptibility to tobramycin. In conclusion, the prevalence of NTM disease, especially that of the pulmonary NTM disease, is common in Southwest China. Species identification and drug susceptibility testing are thus extremely important to ensure appropriate treatment regimens for patient care and management.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium Infections, Nontuberculous/epidemiology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium/classification , Mycobacterium/drug effects , China , Female , Humans , Male , Middle Aged , Mycobacterium/genetics , Mycobacterium Infections, Nontuberculous/drug therapy
5.
Materials (Basel) ; 11(7)2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29932099

ABSTRACT

To investigate the effect of ball mill treatment of microcrystalline cellulose (MCC) on the rheological properties of MCC-polymer suspension, the structure and physicochemical characteristics of ground samples with different milling time and the rheological behaviors of MCC-starch suspensions were determined and comprehensively analyzed. During the ball milling process, MCC underwent a morphological transformation from rod-like to spherical shape under the combined effect of breakage and an agglomeration regime. The particle size and crystallinity index of MCC exhibited an exponential declining trend with ball milling time. All of the milled MCC samples presented a crystalline cellulose Iβ structure whereas the MCC mechanically treated in a shorter time had better thermal stability. Rheological measurements of starch/MCC suspensions indicated that all the blended paste exhibited shear thinning behavior and ‘weak’ elastic gel-like viscoelastic properties over the whole investigated range owing to the formation of entangled network structure. The rheological behavior of starch/MCC pastes was strongly dependent on milling time and concentration of MCC samples. The increase in milling time of MCC samples resulted in the loss of rheological properties of starch/MCC pastes, where the size of the MCC playing a dominant role in affecting the properties of composite suspension. In addition, a possible network within starch/MCC suspensions was proposed.

6.
Polymers (Basel) ; 10(8)2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30960780

ABSTRACT

In this study, corn straw (CS) was reduced in size using the superfine grinding process to generate powders with particles of varying sizes (9~16 µm). The lignin, hemicellulose, and cellulose content; particle size distribution; and scanning electron microscopy (SEM) of the CS samples were analyzed. Superfine CS, of varying particle sizes, was added to the starch-based films (SF) in various amounts. The resulting corn straw starch-based films (CS/SFs) appeared to have significantly different properties, compared to the original starch-based film (SF, p < 0.05). The power law model and Burger's model were used to investigate the dynamic mechanical analysis, which indicated that the mechanical properties of CS/SF performed better than that of SF, especially CS/SFs at 0.5⁻1.5 h ball milling and CS/SFs at a 15% addition amount. The power law model and Burger's model also presented a strong correlation with the experimental data (>0.90).

7.
Bioresour Technol ; 167: 8-13, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24968106

ABSTRACT

Centrate, a type of nutrient-rich municipal wastewater was used to determine the effect of wastewater-borne bacteria on algal growth and nutrients removal efficiency in this study. The characteristics of algal and bacterial growth profiles, wastewater nutrient removal and effect of initial algal inoculums were systematically examined. The results showed that initial algal concentration had apparent effect on bacterial growth, and the presence of bacteria had a significant influence on algal growth pattern, suggesting symbiotic relationship between algae and bacteria at the initial stage of algae cultivation. The maximum algal biomass of 2.01 g/L with 0.1g/L initial algal inoculums concentration can be obtained during algae cultivation in raw centrate medium. The synergistic effect of centrate-borne bacteria and microalgae on algae growth and nutrient removal performance at initial fast growth stage has great potential to be applied to pilot-scale wastewater-based algae wastewater system cultivated in continuous or semi-continuous mode.


Subject(s)
Bacteria/metabolism , Cell Culture Techniques/methods , Chlorella/growth & development , Nitrogen/isolation & purification , Phosphorus/isolation & purification , Wastewater/microbiology , Water Microbiology , Bacteria/growth & development , Biological Oxygen Demand Analysis , Hydrogen-Ion Concentration , Water Pollutants, Chemical/isolation & purification
8.
Appl Biochem Biotechnol ; 172(3): 1390-406, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24203276

ABSTRACT

Integration of wastewater treatment with algae cultivation is one of the promising ways to achieve an economically viable and environmentally sustainable algal biofuel production on a commercial scale. This study focused on pilot-scale algal biomass production system development, cultivation process optimization, and integration with swine manure wastewater treatment. The areal algal biomass productivity for the cultivation system that we developed ranged from 8.08 to 14.59 and 19.15-23.19 g/m(2) × day, based on ash-free dry weight and total suspended solid (TSS), respectively, which were higher than or comparable with those in literature. The harvested algal biomass had lipid content about 1.77-3.55%, which was relatively low, but could be converted to bio-oil via fast microwave-assisted pyrolysis system developed in our lab. The lipids in the harvested algal biomass had a significantly higher percentage of total unsaturated fatty acids than those grown in lab conditions, which may be attributed to the observed temperature and light fluctuations. The nutrient removal rate was highly correlated to the biomass productivity. The NH3-N, TN, COD, and PO4-P reduction rates for the north-located photo-bioreactor (PBR-N) in July were 2.65, 3.19, 7.21, and 0.067 g/m(2) × day, respectively, which were higher than those in other studies. The cultivation system had advantages of high mixotrophic growth rate, low operating cost, as well as reduced land footprint due to the stacked-tray bioreactor design used in the study.


Subject(s)
Biofuels , Bioreactors , Cyanobacteria/chemistry , Wastewater/chemistry , Animals , Carbon Dioxide/chemistry , Cyanobacteria/growth & development , Humans , Manure , Swine
9.
Carbohydr Polym ; 101: 727-32, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24299832

ABSTRACT

The effect of moisture content on the interactions between water and partially gelatinized starch during gelatinization process was investigated. The interactions were probed using differential scanning calorimetry (DSC). The starch samples were partially gelatinized at 25°C (S25), 64°C (S64), 68°C (S68) and 70°C (S70) and the moisture contents were varied from 25% to 78% (w/w). The G endotherm was not observed and only the M1 endotherm was observed in S64, S68 and S70 in the entire moisture content range. The G endotherm was not observed and only the M1 endotherm was observed at higher peak temperature in S25 when the moisture content was below 30% (w/w). The melting temperature of M2 endotherm in S70 was the highest among all the samples tested in the entire moisture content range. At water content>30% (w/w), S68 and S70 had lower amount of unfreezable water, while S64 had higher amount of unfreezable water.


Subject(s)
Starch/chemistry , Water/chemistry , Zea mays/chemistry , Gels , Temperature , Thermodynamics
10.
Carbohydr Polym ; 97(2): 512-7, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23911478

ABSTRACT

The objective of this work was to investigate the effect of partial gelatinization of starch on its retrogradation using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. The Avrami equation was used to predict the evolution of starch retrogradation kinetics. The degree of retrogradation in starch samples partially gelatinized 64°C (S64), 68°C (S68) and 70°C (S70) and control (S25) increased with storage time. The retrogradation enthalpies of S68 and S70 were almost four times as high as that of S64. The S25 and S64 had dominant A-type crystalline pattern while S68 and S70 showed dominant B-type crystalline pattern. The growth of remainder crystals was faster in S25 and S64, while both the nucleation and growth rates of new crystals were faster in S68 and S70. The Avrami model was found to represent the retrogradation kinetics data of these partially gelatinized starch samples quite satisfactorily (R(2)>0.95).


Subject(s)
Gels/chemistry , Starch/chemistry , Zea mays/chemistry , Calorimetry, Differential Scanning , Crystallization , Kinetics , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...