Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 405(25): 8285-94, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23877183

ABSTRACT

The discovery and implementation of the long-term metabolite of metandienone, namely 17ß-hydroxymethyl-17α-methyl-18-norandrost-1,4,13-trien-3-one, to doping control resulted in hundreds of positive metandienone findings worldwide and impressively demonstrated that prolonged detection periods significantly increase the effectiveness of sports drug testing. For oxandrolone and other 17-methyl steroids, analogs of this metabolite have already been described, but comprehensive characterization and pharmacokinetic data are still missing. In this report, the synthesis of the two epimeric oxandrolone metabolites-17ß-hydroxymethyl-17α-methyl-18-nor-2-oxa-5α-androsta-13-en-3-one and 17α-hydroxymethyl-17ß-methyl-18-nor-2-oxa-5α-androsta-13-en-3-one-using a fungus (Cunninghamella elegans) based protocol is presented. The reference material was fully characterized by liquid chromatography nuclear magnetic resonance spectroscopy and high resolution/high accuracy mass spectrometry. To ensure a specific and sensitive detection in athlete's urine, different analytical approaches were followed, such as liquid chromatography-tandem mass spectrometry (QqQ and Q-Orbitrap) and gas chromatography-tandem mass spectrometry, in order to detect and identify the new target analytes. The applied methods have demonstrated good specificity and no significant matrix interferences. Linearity (R(2) > 0.99) was tested, and precise results were obtained for the detection of the analytes (coefficient of variation <20%). Limits of detection (S/N) for confirmatory and screening analysis were estimated at 1 and 2 ng/mL of urine, respectively. The assay was applied to oxandrolone post-administration samples to obtain data on the excretion of the different oxandrolone metabolites. The studied specimens demonstrated significantly longer detection periods (up to 18 days) for the new oxandrolone metabolites compared to commonly targeted metabolites such as epioxandrolone or 18-nor-oxandrolone, presenting a promising approach to improve the fight against doping.


Subject(s)
Anabolic Agents/metabolism , Anabolic Agents/urine , Gas Chromatography-Mass Spectrometry/methods , Oxandrolone/metabolism , Oxandrolone/urine , Substance Abuse Detection/methods , Anabolic Agents/chemical synthesis , Anabolic Agents/chemistry , Chromatography, Liquid/methods , Doping in Sports , Humans , Limit of Detection , Male , Middle Aged , Oxandrolone/analogs & derivatives , Oxandrolone/chemical synthesis , Tandem Mass Spectrometry/methods
2.
Drug Test Anal ; 4(6): 534-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22447758

ABSTRACT

The misuse of the sympathomimetic and anabolic agent clenbuterol has been frequently reported in professional sport and in the livestock industry. In 2010, a team of athletes returned from competition in China and regular doping control samples were taken within the next two days. All urine samples contained low amounts (pg/ml) of clenbuterol, drawing the attention to a well-known problem: the possibility of an unintended clenbuterol intake with food. A warning that Chinese meat is possibly contaminated with prohibited substances according to international anti-doping regulations was also given by Chinese officials just before the Bejing Olympic Games in 2008. To investigate if clenbuterol can be found in human urine, a study was initiated comprising 28 volunteers collecting urine samples after their return from China. For the quantification of clenbuterol at a low pg/ml level, a very sensitive and specific isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed using liquid/liquid re-extraction for clean-up with a limit of detection and quantification of 1 and 3 pg/ml, respectively. The method was validated demonstrating good precision (intra-day: 2.9-5.5 %; inter-day: 5.1-8.8%), accuracy (89.5-102.5%) and mean recovery (81.4%). Clenbuterol was detectable in 22 (79%) of the analyzed samples, indicating a general food contamination problem despite an official clenbuterol prohibition in China for livestock.


Subject(s)
Adrenergic beta-Agonists/urine , Clenbuterol/urine , Doping in Sports , Food Contamination , Animals , China , Chromatography, Liquid/methods , Female , Humans , Livestock , Male , Meat , Sensitivity and Specificity , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...