Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 804
Filter
1.
Article in English | MEDLINE | ID: mdl-38970163

ABSTRACT

INTRODUCTION: Antimicrobial peptides (AMPs) are polypeptides with potent antimicrobial activity against a broad range of pathogenic microorganisms. Unlike conventional antibiotics, AMPs have rapid bactericidal activity, a low capacity for inducing resistance, and compatibility with the host immune system. A large body of data supports the antimicrobial activities of a large body of data supports the antimicrobial activities of the class of AMPs known as ß-defensins. This review provides a comprehensive analysis of the effects of ß-defensins against various pathogenic microorganism: bacteria, fungi, viruses, Mycoplasmas and Chlamydiae. The primary mechanisms of ß-defensins against pathogenic microorganisms include inhibition of biofilms formations, dissolution of membranes, disruption of cell walls, and inhibition of adhesion and receptor binding. Although further study and structural modifications are needed, ß-defensins are promising candidates for antimicrobial therapy. AREAS COVERED: This review describes the inhibitory effects of ß-defensins on various pathogenic microorganisms. Additionally, we focus on elucidating the mechanisms underlying their actions to provide, providing valuable references for the further study of ß-defensins. EXPERT OPINION: The biological activities and modes of action of ß-defensins provide powerful resources for clinical microbial infection management. Addressing the salt sensitivity and toxicity of ß-defensins may further enhance their potential applications.

2.
Ultrasonics ; 142: 107359, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38823151

ABSTRACT

Conventional surface acoustic wave (SAW) atomizers require a direct water supply on the surface, which can be complex and cumbersome. This paper presents a novel SAW atomizer that uses lateral acoustic wetting to achieve atomization without a direct water supply. The device works by simply pressing a piece of wetted paper strip against the bottom of an excited piezoelectric transducer. The liquid then flows along the side to the unmodified surface edge, where it is atomized into a well-converging mist in a stable and sustainable manner. We identified this phenomenon as the edge effect, using numerical simulation results of surface displacement mode. The feasibility of the prototype design was demonstrated by observing and investigating the integrated process of liquid extraction, transport, and atomization. We further explored the hydrodynamic principles of the change and breakup in liquid film geometry under different input powers. Experiments demonstrate that our atomizer is capable of generating high-quality fine liquid particles stably and rapidly even at very high input power. Compared to conventional SAW atomizer, the dispersion of mist width can be scaled down by 70%, while the atomization rate can be increased by 37.5%. Combined with the advantages of easy installation and robustness, the edge effect-based atomizer offers an attractive alternative to current counterparts for applications requiring high efficiency and miniaturization, such as simultaneous synthesis and encapsulation of nanoparticles, pulmonary drug delivery and portable inhalation therapy.

3.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38854057

ABSTRACT

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, it remains unclear whether similar biological processes occur during healthy aging, albeit to a lesser degree. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no changes in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th +/Vglut2 + neurons, Th and Vglut2 transcripts decreased with aging. Importantly, striatal Th and Vglut2 protein expression remained unchanged. In translating our findings to humans, we found no midbrain neurodegeneration during aging and identified age-related decreases in TH and VGLUT2 mRNA expression similar to mouse. Unlike mice, we discovered diminished density of striatal TH+ dopaminergic terminals in aged human subjects. However, TH and VGLUT2 protein expression were unchanged in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th + neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.

4.
Sci Rep ; 14(1): 14106, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890489

ABSTRACT

Although 3D reconstruction has been widely used in many fields as a key component of environment perception, existing technologies still have the potential for further improvement in 3D scene reconstruction. We propose an improved reconstruction algorithm based on the MVSNet network architecture. To glean richer pixel details from images, we suggest deploying a DE module integrated with a residual framework, which supplants the prevailing feature extraction mechanism. The DE module uses ECA-Net and dilated convolution to expand the receptive field range, performing feature splicing and fusion through the residual structure to retain the global information of the original image. Moreover, harnessing attention mechanisms refines the 3D cost volume's regularization process, bolstering the integration of information across multi-scale feature volumes, consequently enhancing depth estimation precision. When assessed our model using the DTU dataset, findings highlight the network's 3D reconstruction scoring a completeness (comp) of 0.411 mm and an overall quality of 0.418 mm. This performance is higher than that of traditional methods and other deep learning-based methods. Additionally, the visual representation of the point cloud model exhibits marked advancements. Trials on the Blended MVS dataset signify that our network exhibits commendable generalization prowess.

5.
Inorg Chem ; 63(26): 12350-12359, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38887050

ABSTRACT

Hybrid metal halide materials with charming phase transition behaviors have attracted considerable attention. In former works, much attention has been focused on the phase transition triggered by the order-disorder or displacement motions of the organic component. However, manipulating the variation of the inorganic component to achieve the phase transition has rarely been reported. Herein, two novel organic-inorganic hybrid materials, [THPM]n[AgX2]n (THPM = 3,4,5,6-tetrahydropyrimidin-1-ium, X = I for 1 and Br for 2) with the [AgX2]nn- anionic chain structure, were synthesized. At 293 K, the [AgX2]nn- chains in 1 were constructed by the tetramer units of Ag atoms, while that in 2 was assembled by the dimer structure. Upon heating to 355 K, owing to the variation of the metallophilic interaction between adjacent Ag atoms, a unique transformation process from tetramer to dimer in [AgI2]nn- chains of 1 can be detected and endow 1 with a giant anisotropic thermal expansion with linear strain of ∼7% and shear strain of ∼20%, which can be used as a mechanical actuator for switching. Alternatively, for 2, no phase transition process can be observed upon the temperature variation. This work provides an effective approach to design phase transition materials triggered by the inorganic part.

6.
Biomed Pharmacother ; 176: 116828, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810406

ABSTRACT

BACKGROUND: Fullerenes C60 shows great potential for drug transport. C60 generates large amounts of singlet oxygen upon photoexcitation, which has a significant inhibitory effect on tumor cells, so the photosensitive properties of C60 were exploited for photodynamic therapy of tumors by laser irradiation. METHODS: In this study, C60-NH2 was functionalized by introducing amino acids on the surface of C60, coupled with 5-FU to obtain C60 amino acid-derived drugs (C60AF, C60GF, C60LF), and activated photosensitive drugs (C60AFL, C60GFL, C60LFL) were obtained by laser irradiation. The C60 nano-photosensitive drugs were characterized in various ways, and the efficacy and safety of C60 nano-photosensitive drugs were verified by cellular experiments and animal experiments. Bioinformatics methods and cellular experiments were used to confirm the photosensitive drug targets and verify the therapeutic targets with C60AF. RESULTS: Photosensitised tumor-targeted drug delivery effectively crosses cell membranes, leads to more apoptotic cell death, and provides higher anti-tumor efficacy and safety in vitro and in vivo colorectal cancer pharmacodynamic assays compared to free 5-FU.C60 photosensitized drug promotes tumor killing by inhibiting the colorectal cancer FLOR1 tumor protein target, with no significant toxic effects on normal organs. CONCLUSION: C60 photosensitized drug delivery systems are expected to improve efficacy and reduce side effects in the future treatment of colorectal cancer. Further and better development and design of drugs and vectors for colorectal cancer therapy.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Fullerenes , Nanoparticle Drug Delivery System , Photosensitizing Agents , Fullerenes/chemistry , Nanoparticle Drug Delivery System/chemical synthesis , Nanoparticle Drug Delivery System/standards , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Colorectal Neoplasms/drug therapy , Amino Acids/chemistry , Fluorouracil/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , HT29 Cells , Apoptosis/drug effects , Cell Movement/drug effects , Reactive Oxygen Species/metabolism , Humans , Animals , Mice , Light
7.
J Anim Sci ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713167

ABSTRACT

Follicular fluid meiosis-activating sterol (FF-MAS) is a small molecule compound found in follicular fluid, named for its ability to induce oocyte resumption of meiosis. Granulosa cells (GCs) within the follicle are typically located in a hypoxic environment under physiologic conditions due to limited vascular distribution. Previous research suggests that hypoxia-induced cell cycle arrest and apoptosis in GCs may be crucial triggering factors in porcine follicular atresia. However, the impact of FF-MAS on GCs within follicles has not been explored so far. In this study, we uncovered a novel role of FF-MAS in facilitating GC survival under hypoxic conditions by inhibiting STAT4 expression. We found that STAT4 expression was upregulated in porcine GCs exposed to 1% O2. Both gain and loss of function assays confirmed that STAT4 was required for cell apoptosis under hypoxia conditions, and that the GC apoptosis caused by hypoxia was markedly attenuated following FF-MAS treatment through inhibition of STAT4 expression. Correlation analysis in vivo revealed that GC apoptosis was associated with increased STAT4 expression, while the FF-MAS content in follicular fluid was negatively correlated with STAT4 mRNA levels and cell apoptosis. These findings elucidate a novel role of FF-MAS-mediated protection of GCs by inhibiting STAT4 expression under hypoxia, which might contribute to the mechanistic understanding of follicular development.

8.
Biomedicines ; 12(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790988

ABSTRACT

Cancer patients face increased susceptibility to invasive infections, primarily due to ulcerative lesions on mucosal surfaces and immune suppression resulting from chemotherapy. Pseudomonas aeruginosa (P. aeruginosa) bacteremia is notorious for its rapid progression into fatal sepsis, posing a significant threat to cancer patients, particularly those experiencing chemotherapy-induced neutropenia. This bacterial infection contributes significantly to morbidity and mortality rates among such individuals. Our latest report showed the mutually beneficial effects of postbiotic butyrate on 1,25-dihydroxyvitamin D3 (1,25D3)-controlled innate immunity during Salmonella colitis. Hence, we investigated the impact of butyrate and 1,25D3 on chemotherapy-induced gut-derived P. aeruginosa sepsis in mice. The chemotherapy-induced gut-derived P. aeruginosa sepsis model was established through oral administration of 1 × 107 CFU of the P. aeruginosa wild-type strain PAO1 in C57BL/6 mice undergoing chemotherapy. Throughout the infection process, mice were orally administered butyrate and/or 1,25D3. Our observations revealed that the combined action of butyrate and 1,25D3 led to a reduction in the severity of colitis and the invasion of P. aeruginosa into the liver and spleen of the mice. This reduction was attributed to an enhancement in the expression of defensive cytokines and antimicrobial peptides within the cecum, coupled with decreased levels of zonulin and claudin-2 proteins in the mucosal lining. These effects were notably more pronounced when compared to treatments administered individually. This study unveils a promising alternative therapy that involves combining postbiotics and 1,25D3 for treating chemotherapy-induced gut-derived P. aeruginosa sepsis.

9.
Brain Behav ; 14(5): e3477, 2024 May.
Article in English | MEDLINE | ID: mdl-38680021

ABSTRACT

BACKGROUND: With the decline of cognitive function in vascular cognitive impairment, the burden on the family and society will increase. Therefore, early identification of vascular mild cognitive impairment (VaMCI) is crucial. The focus of early identification of VaMCI is on the attention of risk factors. Therefore, this study aimed to investigate the relationship between diabetes and VaMCI among the Chinese, hoping to predict the risk of VaMCI by diabetes and to move the identification of vascular cognitive impairment forward. METHODS: We collected data from seven clinical centers and nine communities in China. All participants were over 50 years of age and had cognitive complaints. We collected basic information of the participants, and cognitive function was professionally assessed by the Montreal Cognitive Assessment scale. Finally, logistic regression analysis was used to analyze the correlation between each factor and VaMCI. RESULTS: A total of 2020 participants were included, including 1140 participants with VaMCI and 880 participants with normal cognition. In univariate logistic regression analysis, age, heavy smoking, and diabetes had a positive correlation with VaMCI. At the same time, being married, high education, and light smoking had a negative correlation with VaMCI. After correction, only diabetes (OR = 1.04, 95% CI: 1.01-1.09, p = 0.05) had a positive correlation with VaMCI, and high education (OR = 0.60, 95% CI:.45-.81, p = 0.001) had a negative correlation with VaMCI. CONCLUSION: In our study, we found that diabetes had a positive correlation with VaMCI, and high education had a negative correlation with VaMCI. Therefore, early identification and timely intervention of diabetes may reduce the risk of VaMCI and achieve early prevention of VaMCI.


Subject(s)
Cognitive Dysfunction , Humans , Male , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Female , Cross-Sectional Studies , Middle Aged , China/epidemiology , Aged , Risk Factors , Diabetes Mellitus/epidemiology , East Asian People
10.
Angew Chem Int Ed Engl ; 63(27): e202402374, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38655601

ABSTRACT

The construction of secondary building units (SBUs) in versatile metal-organic frameworks (MOFs) represents a promising method for developing multi-functional materials, especially for improving their sensitizing ability. Herein, we developed a dual small molecules auxiliary strategy to construct a high-nuclear transition-metal-based UiO-architecture Co16-MOF-BDC with visible-light-absorbing capacity. Remarkably, the N3 - molecule in hexadecameric cobalt azide SBU offers novel modification sites to precise bonding of strong visible-light-absorbing chromophores via click reaction. The resulting Bodipy@Co16-MOF-BDC exhibits extremely high performance for oxidative coupling benzylamine (~100 % yield) via both energy and electron transfer processes, which is much superior to that of Co16-MOF-BDC (31.5 %) and Carboxyl @Co16-MOF-BDC (37.5 %). Systematic investigations reveal that the advantages of Bodipy@Co16-MOF-BDC in dual light-absorbing channels, robust bonding between Bodipy/Co16 clusters and efficient electron-hole separation can greatly boost photosynthesis. This work provides an ideal molecular platform for synergy between photosensitizing MOFs and chromophores by constructing high-nuclear transition-metal-based SBUs with surface-modifiable small molecules.

11.
Autism Res ; 17(6): 1149-1160, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641916

ABSTRACT

To date, information on associations between motor skills and executive functions (EF) in autistic children is limited. The purpose of this study was to compare motor skills and EF performance between autistic children and typically developing (TD) children and to examine the relationships between motor skills and EF in these two groups. Forty-eight autistic children and 48 TD children aged 6 to 12 years were recruited for this study. Motor skills were measured with the Bruininks-Oseretsky Test of Motor Proficiency-2 (BOT-2). EF was assessed with the Stroop Color and Word Test, the Wisconsin Card Sorting Task (WCST), and the Test of Attentional Performance: Go/No-go test. Independent sample t-tests were used to compare the BOT-2 scores and EF measures between autistic children and TD children. Pearson product-moment correlation and regressions were conducted to assess the relationships between the BOT-2 scores and the EF measures for each group. Results showed that autistic children scored significantly lower than TD children on all four BOT-2 composite scores and a total motor composite. Autistic children also demonstrated significantly lower levels of performance on all EF measures than TD children. Further, autistic children showed more significant associations between motor skills and EF than TD children, particularly pronounced in the domains of fine manual control and manual coordination to cognitive flexibility, as well as manual coordination and inhibitory control. Continued development of motor skills and EF in autistic children is important. The relationships between motor skills and EF were significant among autistic children, suggesting future research on promoting EF through motor skill interventions in autistic children is required.


Subject(s)
Autism Spectrum Disorder , Executive Function , Motor Skills , Humans , Child , Male , Executive Function/physiology , Female , Motor Skills/physiology , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/complications , Neuropsychological Tests/statistics & numerical data
12.
J Dent Sci ; 19(2): 1028-1035, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618058

ABSTRACT

Background/purpose: Oral submucous fibrosis (OSF) is a precancerous lesion in the oral cavity, commonly results from the Areca nut chewing habit. Arecoline, the main component of Areca nut, is known to stimulate the activation of myofibroblasts, which can lead to abnormal collagen I deposition. Meanwhile, Resveratrol is a non-flavonoid phenolic substance that can be naturally obtained from various berries and foods. Given that resveratrol has significant anti-fibrosis traits in other organs, but little is known about its effect on OSF, this study aimed to investigate the therapeutic impact of resveratrol on OSF and its underlying mechanism. Materials and methods: The cytotoxicity of resveratrol was tested using normal buccal mucosal fibroblasts (BMFs). Myofibroblast phenotypes such as collagen contractile, enhanced migration, and wound healing capacities in dose-dependently resveratrol-treated fBMFs were examined. Results: Current results showed that arecoline induced cell migration and contractile activity in BMFs as well as upregulated the expressions of α-SMA, type I collagen, and ZEB1 markers. Resveratrol intervention, on the other hand, was shown to inhibit arecoline-induced myofibroblast activation and reduce myofibroblast hallmarks and EMT markers. Additionally, resveratrol was also demonstrated to restore the downregulated miR-200a in the arecoline-stimulated cells. Conclusion: In a nutshell, these findings implicate that resveratrol may have an inhibitory influence on arecoline-induced fibrosis via the regulation of miR-200a. Hence, resveratrol may be used as a therapeutic strategy for OSF intervention.

13.
Pharmacol Res ; 203: 107160, 2024 May.
Article in English | MEDLINE | ID: mdl-38547937

ABSTRACT

Immunostimulatory antibody conjugates (ISACs) as a promising new generation of targeted therapeutic antibody-drug conjugates (ADCs), that not only activate innate immunity but also stimulate adaptive immunity, providing a dual therapeutic effect to eliminate tumor cells. However, several ISACs are still in the early stages of clinical development or have already failed. Therefore, it is crucial to design ISACs more effectively to overcome their limitations, including high toxicity, strong immunogenicity, long development time, and poor pharmacokinetics. This review aims to summarize the composition and function of ISACs, incorporating current design considerations and ongoing clinical trials. Additionally, the review delves into the current issues with ISACs and potential solutions, such as adjusting the drug-antibody ratio (DAR) to improve the bioavailability of ISACs. By leveraging the affinity and bioavailability-enhancing properties of bispecific antibodies, the utility between antibodies and immunostimulatory agents can be balanced. Commonly used immunostimulatory agents may induce systemic immune reactions, and BTK (Bruton's tyrosine kinase) inhibitors can regulate immunogenicity. Finally, the concept of grafting ADC's therapeutic principles is simple, but the combination of payload, linker, and targeted functional molecules is not a simple permutation and combination problem. The development of conjugate drugs faces more complex pharmacological and toxicological issues. Standing on the shoulders of ADC, the development and application scenarios of ISAC are endowed with broader space.


Subject(s)
Immunoconjugates , Humans , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Animals , Neoplasms/drug therapy , Neoplasms/immunology
14.
Front Endocrinol (Lausanne) ; 15: 1345203, 2024.
Article in English | MEDLINE | ID: mdl-38469143

ABSTRACT

Background: Tyrosine kinase inhibitors (TKIs) contribute to the treatment of patients with anaplastic thyroid cancer (ATC). Although prospective clinical studies of TKIs exhibit limited efficacy, whether ATC patients benefit from TKI treatment in real-world clinical practice may enlighten future explorations. Therefore, we conducted this effective analysis based on real-world retrospective studies to illustrate the efficacy of TKI treatment in ATC patients. Methods: We systematically searched the online databases on September 03, 2023. Survival curves were collected and reconstructed to summarize the pooled curves. Responses were analyzed by using the "meta" package. The primary endpoints were progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and disease control rate (DCR). Results: 12 studies involving 227 patients were enrolled in the study. Therapeutic strategies included: anlotinib, lenvatinib, dabrafenib plus trametinib, vemurafenib, pembrolizumab plus dabrafenib and trametinib, pembrolizumab plus lenvatinib, pembrolizumab plus trametinib, and sorafenib. The pooled median OS and PFS were 6.37 months (95% CI 4.19-10.33) and 5.50 months (95% CI 2.17-12.03). The integrated ORR and DCR were 32% (95% CI 23%-41%) and 40% (95% CI 12%-74%). Conclusion: In real-world clinical practice, ATC patients could benefit from TKI therapy. In future studies, more basic experiments and clinical explorations are needed to enhance the effects of TKIs in the treatment of patients with ATC.


Subject(s)
Imidazoles , Oximes , Phenylurea Compounds , Quinolines , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/drug therapy , Retrospective Studies , Prospective Studies , Thyroid Neoplasms/drug therapy
15.
World J Gastrointest Oncol ; 16(2): 259-272, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38425391

ABSTRACT

Approximately 20% of colorectal cancer (CRC) patients present with metastasis at diagnosis. Among Stage I-III CRC patients who undergo surgical resection, 18% typically suffer from distal metastasis within the first three years following initial treatment. The median survival duration after the diagnosis of metastatic CRC (mCRC) is only 9 mo. mCRC is traditionally considered to be an advanced stage malignancy or is thought to be caused by incomplete resection of tumor tissue, allowing cancer cells to spread from primary to distant organs; however, increasing evidence suggests that the mCRC process can begin early in tumor development. CRC patients present with high heterogeneity and diverse cancer phenotypes that are classified on the basis of molecular and morphological alterations. Different genomic and nongenomic events can induce subclone diversity, which leads to cancer and metastasis. Throughout the course of mCRC, metastatic cascades are associated with invasive cancer cell migration through the circulatory system, extravasation, distal seeding, dormancy, and reactivation, with each step requiring specific molecular functions. However, cancer cells presenting neoantigens can be recognized and eliminated by the immune system. In this review, we explain the biological factors that drive CRC metastasis, namely, genomic instability, epigenetic instability, the metastatic cascade, the cancer-immunity cycle, and external lifestyle factors. Despite remarkable progress in CRC research, the role of molecular classification in therapeutic intervention remains unclear. This review shows the driving factors of mCRC which may help in identifying potential candidate biomarkers that can improve the diagnosis and early detection of mCRC cases.

16.
World J Stem Cells ; 16(2): 137-150, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38455095

ABSTRACT

Blood vessels constitute a closed pipe system distributed throughout the body, transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys. Changes in blood vessels are related to many disorders like stroke, myocardial infarction, aneurysm, and diabetes, which are important causes of death worldwide. Translational research for new approaches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems. Although mice or rats have been widely used, applying data from animal studies to human-specific vascular physiology and pathology is difficult. The rise of induced pluripotent stem cells (iPSCs) provides a reliable in vitro resource for disease modeling, regenerative medicine, and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells. This review summarizes the latest progress from the establishment of iPSCs, the strategies for differentiating iPSCs into vascular cells, and the in vivo transplantation of these vascular derivatives. It also introduces the application of these technologies in disease modeling, drug screening, and regenerative medicine. Additionally, the application of high-tech tools, such as omics analysis and high-throughput sequencing, in this field is reviewed.

17.
Int J Med Mushrooms ; 26(4): 53-61, 2024.
Article in English | MEDLINE | ID: mdl-38523449

ABSTRACT

Air humidity is an important environmental factor restricting the fruit body growth of Auricularia heimuer. Low air humidity causes the fruit body to desiccate and enter dormancy. However, the survival mechanisms to low air humidity for fruit bodies before dormancy remain poorly understood. In the present study, we cultivated A. heimuer in a greenhouse and collected the fruit bodies at different air humidities (90%, 80%, 70%, 60%, and 50%) to determine the contents of malondialdehyde (MDA) and non-enzymatic antioxidants such as ascorbic acid (AsA) and glutathione (GSH); and the activities of enzymatic antioxidants including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione reductase (GR). Results showed that the MDA contents tended to increase with decreasing relative air humidity. Relative air humidity below 90% caused membrane lipid peroxidation and oxidative stress (based on MDA contents) to the fruit body, which we named air humidity stress. In contrast to the control and with the degree of stress, the GSH contents and activities of SOD, CAT, GR, GPX, and APX tended to ascend, whereas AsA showed a declining trend; the POD activity only rose at 50%. The antioxidants favored the fruit body to alleviate oxidative damage and strengthened its tolerance to air humidity stress. The antioxidant defense system could be an important mechanism for the fruit body of A. heimuer in air humidity stress.


Subject(s)
Antioxidants , Auricularia , Basidiomycota , Antioxidants/metabolism , Humidity , Fruit/metabolism , Catalase/metabolism , Ascorbic Acid , Oxidative Stress , Glutathione/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Basidiomycota/metabolism , Lipid Peroxidation
18.
Carbohydr Polym ; 334: 122015, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553215

ABSTRACT

Developing large-scale hydrogels with high tensile strength and robust mechanical properties is an intricate challenge of great industrial significance. In this study, we demonstrate an efficient method for producing nanocomposite hydrogels with extraordinary mechanical properties. Our approach involves a two-step process: an initial stage of pre-cross-linking boron nitride (BN)-enriched pre-gel sodium alginate, followed by cross-linking with metal ions. In stark contrast to conventional sodium alginate hydrogels (SA), our newly formulated 'BS hydrogel' exhibited an impressive tensile strength exceeding 41 MPa and improved thermal resistance. Moreover, the reconstituted BS hydrogel exhibited tensile strengths ranging from 47 to 96 MPa and elastic moduli ranging from 199 to 1184 MPa, depending on the cross-linking metal ions. These findings indicate the multifaceted potential of the BS hydrogel, which is poised to revolutionize many applications and represents a significant step forward in hydrogel technology for industrial applications.

19.
Ren Fail ; 46(1): 2313175, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38419564

ABSTRACT

Vascular calcification (VC) is highly prevalent in patients undergoing hemodialysis, and is a significant contributor to the mortality rate. Therefore, biomarkers that can accurately predict the onset of VC are urgently required. Our study aimed to investigate serum miR-15a levels in relation to VC and to develop a predictive model for VC in patients undergoing hemodialysis at the Beijing Friendship Hospital hemodialysis center between 1 January 2019 and 31 December 2020. The patients were categorized into two groups: VC and non-VC. Logistic regression (LR) models were used to examine the risk factors associated with VC. Additionally, we developed an miR-15a-based nomogram based on the results of the multivariate LR analysis. A total of 138 patients under hemodialysis were investigated (age: 58.41 ± 13.22 years; 54 males). VC occurred in 79 (57.2%) patients. Multivariate LR analysis indicated that serum miR-15a, age, and WBC count were independent risk factors for VC. A miR-15a-based nomogram was developed by incorporating the following five predictors: age, dialysis vintage, predialysis nitrogen, WBC count, and miR-15a. The receiver operating characteristic (ROC) curve had an area under the curve of 0.921, diagnostic threshold of 0.396, sensitivity of 0.722, and specificity of 0.932, indicating that this model had good discrimination. This study concluded that serum miR-15a levels, age, and white blood cell (WBC) count are independent risk factors for VC. A nomogram constructed by integrating these risk factors can be used to predict the risk of VC in patients undergoing hemodialysis.


Subject(s)
MicroRNAs , Vascular Calcification , Male , Humans , Middle Aged , Aged , Renal Dialysis/adverse effects , Vascular Calcification/diagnosis , Vascular Calcification/etiology , Risk Factors , Biomarkers
20.
Biomedicines ; 12(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38397855

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of nosocomial infections associated with a high mortality rate and represents a serious threat to human health and the increasing frequency of antimicrobial resistance. Cancer patients are more vulnerable to invasive infection due to ulcerative lesions in mucosal surfaces and immune suppression secondary to chemotherapy. In our in vitro study, we observed that probiotics have the potential to yield beneficial effects on intestinal epithelial cells infected with P. aeruginosa. Additionally, probiotics were found to confer advantageous effects on the innate immunity of mice suffering from Salmonella-induced colitis. As a result, we sought to investigate the impact of probiotics on gut-derived P. aeruginosa sepsis induced by chemotherapy. Following chemotherapy, gut-derived P. aeruginosa sepsis was induced in female C57BL/6 mice aged 6-8 weeks, which were raised under specific-pathogen-free (SPF) conditions in an animal center. Prior to the induction of the sepsis model, the mice were administered 1 × 108 colony-forming units (CFU) of the probiotics, namely Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) via oral gavage. We observed that LGG or BL amplified the inflammatory mRNA expression in mice undergoing chemotherapy and suffering from gut-derived P. aeruginosa sepsis. This led to a heightened severity of colitis, as indicated by histological examination. Meanwhile, there was a notable decrease in the expression of antimicrobial peptide mRNA along with reduced levels of zonulin and claudin-2 protein staining within mucosal tissue. These alterations facilitated the translocation of bacteria to the liver, spleen, and bloodstream. To our astonishment, the introduction of probiotics exacerbated gut-derived P. aeruginosa sepsis in mice undergoing chemotherapy. Conclusively, we must be prudent when using probiotics in mice receiving chemotherapy complicated with gut-derived P. aeruginosa sepsis.

SELECTION OF CITATIONS
SEARCH DETAIL
...