Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 677
Filter
1.
Cell Death Discov ; 10(1): 323, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009585

ABSTRACT

Adipose tissue, aside from adipocytes, comprises various abundant immune cells. The accumulation of low-grade chronic inflammation in adipose tissue serves as a primary cause and hallmark of insulin resistance. In this study, we investigate the physiological roles of FADD in adipose tissue inflammation, adipogenesis, and adipocyte survival. High levels of Fadd mRNA were observed in mitochondrial-rich organs, particularly brown adipose tissue. To explore its metabolic functions, we generated global Fadd knockout mice, resulting in embryonic lethality, while heterozygous knockout (Fadd+/-) mice did not show any significant changes in body weight or composition. However, Fadd+/- mice exhibited reduced respiratory exchange ratio (RER) and serum cholesterol levels, along with heightened global and adipose inflammatory responses. Furthermore, AT masses and expression levels of adipogenic and lipogenic genes were decreased in Fadd+/- mice. In cellular studies, Fadd inhibition disrupted adipogenic differentiation and suppressed the expression of adipogenic and lipogenic genes in cultured adipocytes. Additionally, Fadd overexpression caused adipocyte death in vitro with decreased RIPK1 and RIPK3 expression, while Fadd inhibition downregulated RIPK3 in iWAT in vivo. These findings collectively underscore the indispensable role of FADD in adipose inflammation, adipogenesis, and adipocyte survival.

2.
Hepatology ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976867

ABSTRACT

BACKGROUND AIMS: Studies have shown that blocking the PD-1/PD-L1 pathway may lead to a potential cure for HBV infections. ASC22 (Envafolimab) is a humanized, single-domain PD-L1 antibody administered subcutaneously. This study aimed to evaluate the efficacy and safety of ASC22 in virally suppressed chronic hepatitis B (CHB) patients on nucleos(t)ide analogs (NAs). APPROACH AND RESULTS: This randomized, single-blind, phase IIb trial enrolled CHB patients in two cohorts for a 24-week treatment with ASC22 or placebo (PBO) once every 2 weeks and 24-week follow-up. In total, 60, 59, and 30 patients were treated with 1.0, 2.5 mg/kg ASC22 and PBO, respectively. The mean HBsAg changes from baseline at week 24 and 24 week follow-up periods were -0.309 (p<0.001) and -0.272 (p<0.023) log10 IU/mL in the 1.0 mg/kg ASC22 group, -0.231 (p=0.007) and -0.205 (p=0.12) log10 IU/mL in the 2.5 mg/kg ASC22 group, and-0.003 and -0.063 log10 IU/mL in the PBO group, respectively (ITT population). Three out of ten patients with baseline HBsAg levels ≤100 IU/mL in the 1.0 mg/kg group obtained on-treatment HBsAg loss. Most AEs were mild (97.9%). There were no study drug-related serious AEs in the 1.0 mg/kg ASC22 group. CONCLUSIONS: Subcutaneous administration of 1.0 mg/kg ASC22 Q2W for 24 weeks was shown to be safe and well tolerated in virally suppressed CHB patients on NAs and can induce HBsAg decline, especially in patients with HBsAg ≤100 IU/mL.

3.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998935

ABSTRACT

This article systematically reviews the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of C. speciosa polysaccharides, and their potential application in food, medicine, functional products, and feed, in order to provide a useful reference for future research. Chaenomeles speciosa (Sweet) Nakai. has attracted the attention of health consumers and medical researchers as a traditional Chinese medicine with edible, medicinal, and nutritional benefits. According to this study, C. speciosa polysaccharides have significant health benefits, such as anti-diaetic, anti-inflammatory and analgesic, anti-tumor, and immunomodulatory effects. Researchers determined the molecular weight, structural characteristics, and monosaccharide composition and ratio of C. speciosa polysaccharides by water extraction and alcohol precipitation. This study will lay a solid foundation for further optimization of the extraction process of C. speciosa polysaccharides and the development of their products. As an active ingredient with high value, C. speciosa polysaccharides are worthy of further study and full development. C. speciosa polysaccharides should be further explored in the future, to innovate their extraction methods, enrich their types and biological activities, and lay a solid foundation for further research and development of products containing polysaccharides that are beneficial to the human body.


Subject(s)
Polysaccharides , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Rosaceae/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Medicine, Chinese Traditional , Monosaccharides/chemistry , Monosaccharides/analysis , Structure-Activity Relationship , Animals
4.
Adv Mater ; : e2403865, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857624

ABSTRACT

High-entropy alloy (HEA) nanostructures arranged into well-defined configurations hold great potential for accelerating the development of electronics, photonics, catalysis, and device integration. However, the random nucleation induced by the disparity in physicochemical properties of multiple elements makes it challenging to achieve single-particle synthesis at the patterned preset sites in the high-entropy scenario. Herein, the liquid metal nanoreactor strategy is proposed to realize the construction of HEA arrays. The coalescence of the liquid metal driven by the tendency to decrease surface energy provides a restricted environment for the nucleation and growth to form single HEA particles at the preset locations, which can be regarded as a self-confinement reaction. Liquid metal endowing a low diffusion energy barrier on the substrate and a high diffusivity of the alloy system can dynamically promote the aggregation process. As a result, the HEA array is prepared with elements up to eleven and possesses uniform periodicity, which exhibits excellent holography response in a broad spectrum. This work injects new vitality into the construction of HEA nanopatterns and provides an excellent platform for propelling their fundamental research and applications.

5.
Bioorg Chem ; 150: 107588, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38936051

ABSTRACT

With the advent of mitochondrial targeting moiety such as triphenlyphosphonium cation (TPP+), targeting mitochondria in cancer cells has become a promising strategy for combating tumors. Herein, a series of novel 4-aryl-1,3-thiazole derivatives linked to TPP+ moiety were designed and synthesized. The cytotoxicity against a panel of four cancer cell lines was evaluated by CCK-8 assay. Most of these compounds exhibited moderate to good inhibitory activity over HeLa, PC-3 and HCT-15 cells while MCF-7 cells were less sensitive to most compounds. Among them, compound 12a exhibited a significant anti-proliferative activity against HeLa cells, and prompted for further investigation. Specifically, 12a decreased mitochondrial membrane potential and enhanced levels of reactive oxygen species (ROS). The flow cytometry analysis revealed that compound 12a could induce apoptosis and cell cycle arrest at G0/G1 phase in HeLa cells. In addition, mitochondrial bioenergetics assay revealed that 12a displayed mild mitochondrial uncoupling effect. Taken together, these findings suggest the therapeutic potential of compound 12a as an antitumor agent targeting mitochondria.

6.
Sci Adv ; 10(25): eado2442, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905333

ABSTRACT

Atomically dispersed Pt-group metals are promising as nanocatalysts because of their unique geometric structures and ultrahigh atomic utilization. However, loading isolated Pt-group metals in single-atom alloys (SAAs) with distinctive bimetallic sites is challenging. In this study, we present amorphous mesoporous Ni boride (Ni-B) as an ideal substrate to uniformly disperse Pt atoms with tunable loadings (1.7 to 12.2 wt %). The effect of the morphology, composition, and crystal phase of the Ni-B host on the growth and dispersion of Pt atoms is discussed. The resulting amorphous Pt-Ni-B mesoporous nanospheres exhibit superior electrocatalytic H2 evolution performance in acidic media. This strategy holds the potential to synthesize a diverse library of mesoporous amorphous Pt-group SAAs, by leveraging functional amorphous nanostructured 3d transition-metal borides as substrates, thereby proposing a comprehensive strategy to control atomically dispersed Pt-group metals.

7.
Microorganisms ; 12(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38930444

ABSTRACT

Halo-alkali soil threatens agriculture, reducing growth and crop yield worldwide. In this study, physicochemical and molecular techniques were employed to explore the potential of halo-alkali-tolerant endophytic bacteria strains Sphingomonas sp. pp01, Bacillus sp. pp02, Pantoea sp. pp04, and Enterobacter sp. pp06 to enhance the growth of hybrid Pennisetum under varying saline conditions. The strains exhibited tolerance to high salt concentrations, alkaline pH, and high temperatures. Under controlled conditions, all four strains showed significant growth-promoting effects on hybrid Pennisetum inoculated individually or in combination. However, the effects were significantly reduced in coastal saline soil. The best growth-promoting effect was achieved under greenhouse conditions, increasing shoot fresh and dry weights of hybrid Pennisetum by up to 457.7% and 374.7%, respectively, using irrigating trials. Metagenomic sequencing analysis revealed that the diversity and composition of rhizosphere microbiota underwent significant changes after inoculation with endophytic bacteria. Specifically, pp02 and co-inoculation significantly increased the Dyella and Pseudomonas population. Firmicutes, Mycobacteria, and Proteobacteria phyla were enriched in Bacillus PP02 samples. These may explain the best growth-promoting effects of pp02 and co-inoculation on hybrid Pennisetum under greenhouse conditions. Our findings reveal the performance of endophytic bacterial inoculants in enhancing beneficial microbiota, salt stress tolerance, and hybrid Pennisetum growth.

8.
Arch Esp Urol ; 77(4): 391-396, 2024 May.
Article in English | MEDLINE | ID: mdl-38840282

ABSTRACT

OBJECTIVE: Urinary tract infection (UTI) is a common postoperative complication, so exploring its risk factors is helpful to provide a basis for clinical prevention. This study aims to analyse the risk factors for UTI after lumbar interbody fusion (LIF). METHODS: A single-centre retrospective study was conducted on the clinical data of 358 patients treated with LIF from April 2020 to April 2023. In accordance with the results of postoperative urine culture, the patients were divided into UTI group (n = 19, those with UTI after LIF) and control group (n = 332, those without UTI after LIF). Binary logistic regression analysis was carried out through collecting the medical records of the two groups to probe into the risk factors for UTI after LIF. RESULTS: After seven patients were excluded, the remaining 351 patients were included in the analysis. In this study, 19 patients (5.41%) developed postoperative UTI, whereas 332 patients (94.59%) had no UTI. Regression analysis results showed drinking (odds ratio (OR) = 16.193, 95% confidence interval (CI): 1.017-257.860) and high preoperative C-reactive protein (CRP) level (OR = 3.237, 95% CI: 1.213-8.636) as risk factors for UTI after LIF. A high professional title of main surgeon (OR = 0.095, 95% CI: 0.010-0.932) and preoperative red blood cell (RBC) count (OR = 0.001, 95% CI: 0.000-0.198) were protective factors for UTI after LIF (p < 0.05). CONCLUSIONS: This study advocated strengthening the prevention and treatment of UTI in patients who had drinking history, high preoperative CRP level and low preoperative RBC count, and received LIF based on the study results. Attention should be paid to the training of physicians with low professional title.


Subject(s)
Lumbar Vertebrae , Postoperative Complications , Spinal Fusion , Urinary Tract Infections , Humans , Spinal Fusion/adverse effects , Urinary Tract Infections/etiology , Urinary Tract Infections/epidemiology , Male , Risk Factors , Retrospective Studies , Female , Middle Aged , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Lumbar Vertebrae/surgery , Aged , Risk Assessment
9.
J Cell Biochem ; : e30620, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923014

ABSTRACT

Hepatocellular carcinoma (HCC) poses a significant challenge with dismal survival rates, necessitating a deeper understanding of its molecular mechanisms and the development of improved therapies. Metabolic reprogramming, particularly heightened glycolysis, plays a crucial role in HCC progression. Glycolysis-associated genes (GAGs) emerge as key players in HCC pathogenesis, influencing the tumor microenvironment and immune responses. This study aims to investigate the intricate interplay between GAGs and the immune landscape within HCC, offering valuable insights into potential prognostic markers and therapeutic targets to enhance treatment strategies and patient outcomes. Through the exploration of GAGs, we have identified two distinct molecular glycolytic subtypes in HCC patients, each exhibiting significant differences in both the immune microenvironment and prognosis. A risk model comprising five key GAGs was formulated and subsequently evaluated for their predictive accuracy. Our findings underscore the diverse tumor microenvironment and immune responses associated with the varying glycolytic subtypes observed in HCC. The identified key GAGs hold promise as prognostic indicators for evaluating HCC risk levels, predicting patient outcomes, and guiding clinical treatment decisions, particularly in the context of anticipating responses to immunotherapy drugs.

10.
ACS Nano ; 18(20): 12994-13005, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38721844

ABSTRACT

In this paper, N-doped TiO2 mixed crystals are prepared via direct calcination of TiN for highly selective oxidation of CH4 to HCHO at room temperature. The structures of the prepared TiO2 samples are characterized to be N-doped TiO2 of anatase and rutile mixed crystals. The crystal structures of TiO2 samples are determined by XRD spectra and Raman spectra, while N doping is demonstrated by TEM mapping, ONH inorganic element analysis, and high-resolution XPS results. Significantly, the production rate of HCHO is as high as 23.5 mmol·g-1·h-1 with a selectivity over 90%. Mechanism studies reveal that H2O is the main oxygen source and acts through the formation of ·OH. DFT calculations indicate that the construction of a mixed crystal structure and N-doping modification mainly act by increasing the adsorption capacity of H2O. An efficient photocatalyst was prepared by us to convert CH4 to HCHO with high yield and selectivity, greatly promoting the development of the photocatalytic CH4 conversion study.

11.
Chem Soc Rev ; 53(12): 6021-6041, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38738520

ABSTRACT

High-entropy alloys (HEAs) involving more than four elements, as emerging alloys, have brought about a paradigm shift in material design. The unprecedented compositional diversities and structural complexities of HEAs endow multidimensional exploration space and great potential for practical benefits, as well as a formidable challenge for synthesis. To further optimize performance and promote advanced applications, it is essential to synthesize HEAs with desired characteristics to satisfy the requirements in the application scenarios. The properties of HEAs are highly related to their chemical compositions, microstructure, and morphology. In this review, a comprehensive overview of the controllable synthesis of HEAs is provided, ranging from composition design to morphology control, structure construction, and surface/interface engineering. The fundamental parameters and advanced characterization related to HEAs are introduced. We also propose several critical directions for future development. This review can provide insight and an in-depth understanding of HEAs, accelerating the synthesis of the desired HEAs.

12.
Bioorg Chem ; 148: 107460, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781668

ABSTRACT

A series of genipin derivatives were designed and synthesized as potential inhibitors targeted KRAS G12D mutation. The majority of these compounds demonstrated potential antiproliferative effects against KRAS G12D mutant tumor cells (CT26 and A427). Notably, seven compounds exhibited the anticancer effects with IC50 values ranging from 7.06 to 9.21 µM in CT26 (KRASG12D) and A427 (KRASG12D) cells and effectively suppressed the colony formation of CT26 cells. One representative compound SK12 was selected for further investigation into biological activity and action mechanisms. SK12 markedly induced apoptosis in CT26 cells in a concentration-dependent manner. Moreover, SK12 elevated the levels of reactive oxygen species (ROS) in tumor cells and exhibited a modulatory effect on the KRAS signaling pathway, thereby inhibiting the activation of downstream phosphorylated proteins. The binding affinity of SK12 to KRAS G12D protein was further confirmed by the surface plasmon resonance (SPR) assay with a binding KD of 157 µM. SK12 also exhibited notable anticancer efficacy in a nude mice tumor model. The relative tumor proliferation rate (T/C) of the experimental group (50 mg/kg) was 31.04 % (P < 0.05), while maintaining a commendable safety profile.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Iridoids , Mice, Nude , Proto-Oncogene Proteins p21(ras) , Humans , Iridoids/pharmacology , Iridoids/chemistry , Animals , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Mice , Molecular Structure , Apoptosis/drug effects , Drug Discovery , Cell Line, Tumor , Mutation , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism
13.
BMC Public Health ; 24(1): 1448, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816734

ABSTRACT

BACKGROUND: This study aimed to investigate the knowledge, attitudes, and practices (KAP) toward cardiovascular complications among end-stage renal disease patients undergoing maintenance hemodialysis. METHODS: This web-based cross-sectional study was conducted at Guangdong Provincial People's Hospital between December 2022, and May 2023. RESULTS: A total of 545 valid questionnaires were collected, with an average age of 57.72 ± 13.47 years. The mean knowledge, attitudes and practices scores were 8.17 ± 2.9 (possible range: 0-24), 37.63 ± 3.80 (possible range: 10-50), 33.07 ± 6.10 (possible range: 10-50) respectively. Multivariate logistic regression analysis showed that patients from non-urban area had lower knowledge compared to those from urban area (odds ratio (OR) = 0.411, 95% CI: 0.262-0.644, P < 0.001). Furthermore, higher levels of education were associated with better knowledge, as indicated by OR for college and above (OR = 4.858, 95% CI: 2.483-9.504), high school/vocational school (OR = 3.457, 95% CI: 1.930-6.192), junior high school (OR = 3.300, 95% CI: 1.945-5.598), with primary school and below as reference group (all P < 0.001). Besides, better knowledge (OR = 1.220, 95% CI: 1.132-1.316, P < 0.001) and higher educational levels were independently associated with positive attitudes. Specifically, individuals with a college degree and above (OR = 2.986, 95% CI: 1.411-6.321, P = 0.004) and those with high school/vocational school education (OR = 2.418, 95% CI: 1.314-4.451, P = 0.005) have more positive attitude, with primary school and below as reference group. Next, better attitude (OR = 1.174, 95% CI: 1.107-1.246, P < 0.001) and higher education were independently associated with proactive practices. Those with college and above (OR = 2.870, 95% CI: 1.359-6.059, P = 0.006), and those with high school/vocational school education (OR = 1.886, 95% CI: 1.032-3.447, P = 0.039) had more proactive practices, with primary school and below as reference group. CONCLUSIONS: End-stage renal disease patients undergoing maintenance hemodialysis demonstrated insufficient knowledge, positive attitudes, and moderate practices regarding cardiovascular complications. Targeted interventions should prioritize improving knowledge and attitudes, particularly among patients with lower educational levels and income, to enhance the management of cardiovascular complications in end-stage renal disease.


Subject(s)
Cardiovascular Diseases , Health Knowledge, Attitudes, Practice , Kidney Failure, Chronic , Renal Dialysis , Humans , Male , Female , Renal Dialysis/psychology , Cross-Sectional Studies , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/psychology , Middle Aged , Adult , Aged , Surveys and Questionnaires , China/epidemiology
14.
Int J Biol Macromol ; 267(Pt 1): 131499, 2024 May.
Article in English | MEDLINE | ID: mdl-38614164

ABSTRACT

The genus Lilium (Lilium) has been widely used in East Asia for over 2000 years due to its rich nutritional and medicinal value, serving as both food and medicinal ingredient. Polysaccharides, as one of the most important bioactive components in Lilium, offer various health benefits. Recently, polysaccharides from Lilium plants have garnered significant attention from researchers due to their diverse biological properties including immunomodulatory, anti-oxidant, anti-diabetic, anti-tumor, anti-bacterial, anti-aging and anti-radiation effects. However, the limited comprehensive understanding of polysaccharides from Lilium plants has hindered their development and utilization. This review focuses on the extraction, purification, structural characteristics, biological activities, structure-activity relationships, applications, and relevant bibliometrics of polysaccharides from Lilium plants. Additionally, it delves into the potential development and future research directions. The aim of this article is to provide a comprehensive understanding of polysaccharides from Lilium plants and to serve as a basis for further research and development as therapeutic agents and multifunctional biomaterials.


Subject(s)
Lilium , Polysaccharides , Lilium/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Structure-Activity Relationship , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification
15.
Opt Express ; 32(6): 9747-9766, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571201

ABSTRACT

We investigated secondary cavitation bubble dynamics during laser-induced bubble formation in a small container with a partially confined free surface and elastic thin walls. We employed high-speed photography to record the dynamics of sub-mm-sized laser-induced bubbles and small secondary bubble clouds. Simultaneous light scattering and acoustic measurements were used to detect the oscillation times of laser-induced bubbles. We observed that the appearance of secondary bubbles coincides with a prolonged collapse phase and with re-oscillations of the laser-induced bubble. We observed an asymmetric distribution of secondary bubbles with a preference for the upstream side of the focus, an absence of secondary bubbles in the immediate vicinity of the laser focus, and a migration of laser-induced bubble toward secondary bubbles at large pulse energies. We found that secondary bubbles are created through heating of impurities to form initial nanobubble nuclei, which are further expanded by rarefaction waves. The rarefaction waves originate from the vibration of the elastic thin walls, which are excited either directly by laser-induced bubble or by bubble-excited liquid-mass oscillations. The oscillation period of thin walls and liquid-mass were Twall = 116 µs and Tlm ≈ 160 µs, respectively. While the amplitude of the wall vibrations increases monotonically with the size of laser-induced bubbles, the amplitude of liquid-mass oscillation undulates with increasing bubble size. This can be attributed to a phase shift between the laser-induced bubble oscillation and the liquid-mass oscillator. Mutual interactions between the laser-induced bubble and secondary bubbles reveal a fast-changing pressure gradient in the liquid. Our study provides a better understanding of laser-induced bubble dynamics in a partially confined environment, which is of practical importance for microfluidics and intraluminal laser surgery.

16.
Phytomedicine ; 129: 155594, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614040

ABSTRACT

BACKGROUND: The incidence of neuropathic pain is progressively increasing over time. The activation of M1-type microglia plays a crucial role in the initiation and progression of neuropathic pain. Huangqin Decoction (HQD) is traditionally used to alleviate dysentery and abdominal pain. However, it remains unclear whether HQD can effectively mitigate neuropathic pain and the underlying mechanisms. PURPOSE: The present study aims to investigate the impact of HQD on neuropathic pain induced by spared nerve injury (SNI) in mice, and to elucidate whether the analgesic effect of HQD is associated with microglia polarization. METHODS: The analgesic effect of HQD on SNI mice was investigated through assessments of mechanical pain threshold, thermal pain threshold, cold pain threshold, and motor ability. We elucidated the molecular mechanisms of HQD in alleviating SNI-induced neuropathic pain by focusing on microglia polarization and intestinal metabolite abnormalities. The expression levels of markers associated with microglia polarization (Iba-1, CD68, CD206, iNOS) was detected by immunofluorescence and Western blot, and the levels of inflammatory factors (IL-4, IL-10, IL-6, TNF-α) were assessed by ELISA. UPLC-QTOF-MS metabolomics was utilized to identify differential metabolites in the intestines of SNI mice. We screened the differential metabolites related to microglial polarization by correlation analysis, subsequently nicotinamide was selected for validation in LPS-induced BV-2 cells. RESULTS: Our findings demonstrated that HQD (20 g/kg) significantly enhanced the mechanical pain threshold, thermal pain threshold, and cold pain threshold, and protected the injured DRG neurons of SNI mice. Moreover, HQD (20 g/kg) obviously suppressed the expression of microglia M1 polarization markers (Iba-1, CD68, iNOS, IL-6, TNF-α), and promoted the expression of microglia M2 polarization markers (CD206, IL-10, IL-4) in the spinal cord of SNI mice. Additionally, HQD (20 g/kg) prominently ameliorated intestinal barrier damage by upregulating Claudin 1 and Occludin expression in the colon of SNI mice. Furthermore, HQD (20 g/kg) rectified 19 metabolite abnormalities in the intestine. Notably, nicotinamide (100 µM), an amide derivative with anti-inflammatory property, effectively suppresses microglia activation and polarization in LPS-induced BV-2 cells by downregulating IL-6 level and CD68 expression while upregulating IL-4 level and CD206 expression. CONCLUSION: In summary, HQD alleviates neuropathic pain in SNI mice by regulating the activation and polarization of microglia, partially mediated through intestinal nicotinamide metabolism.


Subject(s)
Drugs, Chinese Herbal , Microglia , Neuralgia , Niacinamide , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Microglia/drug effects , Microglia/metabolism , Male , Drugs, Chinese Herbal/pharmacology , Mice , Niacinamide/pharmacology , Mice, Inbred C57BL , Intestines/drug effects , Pain Threshold/drug effects , Analgesics/pharmacology , Disease Models, Animal
17.
ACS Appl Mater Interfaces ; 16(17): 22035-22047, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38639478

ABSTRACT

Sodium (Na) super ion conductor (NASICON) structure Na3MnTi(PO4)3 (NMTP) is considered a promising cathode for sodium-ion batteries due to its reversible three-electron reaction. However, the inferior electronic conductivity and sluggish reaction kinetics limit its practical applications. Herein, we successfully constructed a three-dimensional cross-linked porous architecture NMTP material (AsN@NMTP/C) by a natural microbe of Aspergillus niger (AsN), and the structure of different NMTP cathodes was optimized by adjusting different transition metal Mn/Ti ratios. Both approaches effectively altered the three-dimensional NMTP structure, not only improving electronic conductivity and controlling Na+ diffusion pathways but also enhancing the electrochemical kinetics of the material. The resultant AsN@NMTP/C-650, sintered at 650 °C, exhibits better electrochemical performance with higher reversible three-electron reactions corresponding to the voltage platforms of Ti4+/3+, Mn3+/2+, and Mn4+/3+ around 2.1, 3.6, and 4.1 V (vs Na+/Na), respectively. The capacity retention rate is up to 89.3% after 1000 cycles at a 2C rate. Moreover, a series of results confirms that the Na3.4Mn1.2Ti0.8(PO4)3 cathode has the most excellent electrochemical performance when the Mn/Ti ratio is 1.2/0.8, with a high capacity of 96.59 mAh g-1 and 97.1% capacity retention after 500 cycles.

18.
J Am Chem Soc ; 146(11): 7118-7123, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38437170

ABSTRACT

High-entropy oxides (HEOs) with an ultrathin geometric structure are especially expected to exhibit extraordinary performance in different fields. The phase structure is deemed as a key factor in determining the properties of HEOs, rendering their phase control synthesis tempting. However, the disparity in intrinsic phase structures and physicochemical properties of multiple components makes it challenging to form single-phase HEOs with the target phase. Herein, we proposed a self-lattice framework-guided strategy to realize the synthesis of ultrathin HEOs with desired phase structures, including rock-salt, spinel, perovskite, and fluorite phases. The participation of the Ga assistor was conducive to the formation of the high-entropy mixing state by decreasing the formation energy. The as-prepared ultrathin spinel HEOs were demonstrated to be an excellent catalyst with high activity and stability for the oxygen evolution reaction in water electrolysis. Our work injects new vitality into the synthesis of HEOs for advanced applications and undoubtedly expedites their phase engineering.

19.
Genes (Basel) ; 15(3)2024 03 11.
Article in English | MEDLINE | ID: mdl-38540411

ABSTRACT

BACKGROUND: The advancement of next-generation sequencing (NGS) technologies provides opportunities for large-scale Pharmacogenetic (PGx) studies and pre-emptive PGx testing to cover a wide range of genotypes present in diverse populations. However, NGS-based PGx testing is limited by the lack of comprehensive computational tools to support genetic data analysis and clinical decisions. METHODS: Bioinformatics utilities specialized for human genomics and the latest cloud-based technologies were used to develop a bioinformatics pipeline for analyzing the genomic sequence data and reporting PGx genotypes. A database was created and integrated in the pipeline for filtering the actionable PGx variants and clinical interpretations. Strict quality verification procedures were conducted on variant calls with the whole genome sequencing (WGS) dataset of the 1000 Genomes Project (G1K). The accuracy of PGx allele identification was validated using the WGS dataset of the Pharmacogenetics Reference Materials from the Centers for Disease Control and Prevention (CDC). RESULTS: The newly created bioinformatics pipeline, Pgxtools, can analyze genomic sequence data, identify actionable variants in 13 PGx relevant genes, and generate reports annotated with specific interpretations and recommendations based on clinical practice guidelines. Verified with two independent methods, we have found that Pgxtools consistently identifies variants more accurately than the results in the G1K dataset on GRCh37 and GRCh38. CONCLUSIONS: Pgxtools provides an integrated workflow for large-scale genomic data analysis and PGx clinical decision support. Implemented with cloud-native technologies, it is highly portable in a wide variety of environments from a single laptop to High-Performance Computing (HPC) clusters and cloud platforms for different production scales and requirements.


Subject(s)
Pharmacogenetics , Pharmacogenomic Testing , Humans , Pharmacogenetics/methods , High-Throughput Nucleotide Sequencing/methods , Genomics/methods , Computational Biology
20.
Mediators Inflamm ; 2024: 4048527, 2024.
Article in English | MEDLINE | ID: mdl-38440354

ABSTRACT

Ovarian cancer (OC) is a common malignant cancer in women with a low overall survival rate, and ferroptosis may be a potential new strategy for treatment. Six-transmembrane epithelial antigen of prostate 3 (STEAP3) is a gene closely related to ferroptosis, yet the role of STEAP3 in OC has not yet been thoroughly investigated. Using biological information analysis, we first found that STEAP3 was highly expressed in OC, which was significantly associated with poor prognosis of patients and was an independent prognostic factor. Through cloning, scratch, and transwell experiments, we subsequently found that knockdown of STEAP3 significantly reduced the proliferation and migration ability of OC cells. Furthermore, we found that knockdown of STEAP3 induced ferroptosis in OC cells by detecting ferroptosis indicators. Mechanistically, we also found that knockdown of STEAP3 induced ferroptosis through the p53/SLC7A11 signaling pathway. Through tumorigenic experiments in nude mice, we finally verified that the knockdown of STEAP3 could inhibit tumor growth in vivo by promoting ferroptosis through the p53 pathway. Overall, our study identified a novel therapeutic target for ferroptosis in OC and explored its specific mechanism of action.


Subject(s)
Ferroptosis , Ovarian Neoplasms , Animals , Female , Humans , Male , Mice , Amino Acid Transport System y+/genetics , Mice, Nude , Ovarian Neoplasms/genetics , Tumor Suppressor Protein p53
SELECTION OF CITATIONS
SEARCH DETAIL
...