Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Waste Manag ; 187: 1-10, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968859

ABSTRACT

Disposal of electrolytes from waste lithium-ion batteries (LIBs) has gained much more attention with the growing application of LIBs, yet handling spent electrolyte is challengeable due to its high toxicity and the lack of established methods. In this study, a novel two-stage thermal process was developed for treating residual electrolytes resulted from spent lithium-ion batteries. The conversion of fluorophosphate and organic matter in oily electrolyte during low-temperature rotation distillation was investigated. The distribution and migration of the concentrated electrolytes were studied and the corresponding reaction mechanisms were elucidated. Additionally, the influence of alkali on the fixation of fluorine and phosphate was further examined. The results indicated that hydrolyzed carbonate esters and lithium in the electrolyte could combine to form Li2CO3 and the hydrolysable hexafluorophosphate was proven to be stable in the concentrated electrolyte (45 rpm/85 °C, 30 min). It was found that CO2, CO, CH4, and H2 were the primary pyrolysis gases, while the pyrolysis oil consisted of extremely flammable substances formed by the dissociation and recombination of chemical bonds in the electrolyte solvent. After pyrolysis at 300 °C, fluorine and phosphate were present in the form of sodium fluoride and sodium phosphate. The stability of the residue was enhanced, and the environmental risk was reduced. By adding alkali (KOH/Ca(OH)2, 20 %), hexafluorophosphate in the electrolyte was transformed into fluoride and phosphate in the residue, thereby reducing the device's corrosion from fluorine-containing gas. This study provides a viable approach for managing the residual electrolyte in the waste lithium battery recovery process.

2.
Article in English | MEDLINE | ID: mdl-38988173

ABSTRACT

BACKGROUND: Knee osteoarthritis (KOA) is a common degenerative joint disease characterized by cartilage degradation, inflammation, and pain. Traditional Chinese Medicine, including JDJM (a herbal formula derived from the renowned Du Huo Ji Sheng Tang), has been used to alleviate symptoms of KOA, but its underlying mechanisms remain unclear. OBJECTIVE: This study aims to elucidate the potential therapeutic mechanisms of JDJM in treating KOA through network pharmacology, weighted gene co-expression network analysis (WGCNA), molecular docking, and experimental validation in animal models. METHODS: The active compounds of JDJM were identified through TCMSP database searches, and their potential targets were predicted using network pharmacology. WGCNA was employed to identify key modules and hub genes associated with KOA. Molecular docking was performed to assess the binding affinities of key compounds to critical inflammatory targets. Molecular dynamics (MD) simulations were used to evaluate the stability of the protein-ligand complexes. An experimental KOA model in rabbits was used to validate the therapeutic effects of JDJM. Histopathological examinations and inflammatory marker analyses were conducted to confirm the findings. RESULTS: Network pharmacology and WGCNA analyses identified 21 key targets and pathways potentially involved in the therapeutic effects of JDJM. Molecular docking results showed that Glyasperin C had the highest docking scores with EGF and IL-1ß, followed by Stigmasterol with IL-6, Myricanone with INS, and Sesamin with VEGFA. MD simulations confirmed the stability of these protein-ligand complexes, indicating strong and stable interactions. In the rabbit KOA model, JDJM treatment significantly improved knee joint morphology and reduced the levels of inflammatory markers, such as IL-6 and TNF-α. Histopathological analysis revealed reduced cartilage degradation and inflammation in the JDJM-treated group compared to controls. CONCLUSION: JDJM exhibits promising anti-inflammatory and cartilage-protective effects, making it a potential therapeutic option for KOA patients. Further experimental and clinical studies are warranted to confirm these findings and translate them into clinical practice.

.

3.
Neural Netw ; 173: 106166, 2024 May.
Article in English | MEDLINE | ID: mdl-38367355

ABSTRACT

The limited transparency of the inner decision-making mechanism in deep neural networks (DNN) and other machine learning (ML) models has hindered their application in several domains. In order to tackle this issue, feature attribution methods have been developed to identify the crucial features that heavily influence decisions made by these black box models. However, many feature attribution methods have inherent downsides. For example, one category of feature attribution methods suffers from the artifacts problem, which feeds out-of-distribution masked inputs directly through the classifier that was originally trained on natural data points. Another category of feature attribution method finds explanations by using jointly trained feature selectors and predictors. While avoiding the artifacts problem, this new category suffers from the Encoding Prediction in the Explanation (EPITE) problem, in which the predictor's decisions rely not on the features, but on the masks that selects those features. As a result, the credibility of attribution results is undermined by these downsides. In this research, we introduce the Double-sided Remove and Reconstruct (DoRaR) feature attribution method based on several improvement methods that addresses these issues. By conducting thorough testing on MNIST, CIFAR10 and our own synthetic dataset, we demonstrate that the DoRaR feature attribution method can effectively bypass the above issues and can aid in training a feature selector that outperforms other state-of-the-art feature attribution methods. Our code is available at https://github.com/dxq21/DoRaR.


Subject(s)
Machine Learning , Neural Networks, Computer
5.
World J Clin Cases ; 11(3): 576-597, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36793625

ABSTRACT

BACKGROUND: Patients with severe aplastic anemia (SAA) frequently present with inflammatory episodes, and during flared inflammatory episodes, hematopoietic function is further exacerbated. The gastrointestinal tract is the most common site for infectious and inflammatory diseases, and its structural and functional features confer on it the most potent capacity to affect hematopoietic and immune functions. Computed tomography (CT) is a readily accessible approach to provide highly useful information in detecting morphological changes and guiding further work-ups. AIM: To explore CT imaging presentations of gut inflammatory damage in adult SAA patients during inflammatory episodes. METHODS: We retrospectively evaluated the abdominal CT imaging presentations of 17 hospitalized adult patients with SAA in search of the inflammatory niche when they presented with systemic inflammatory stress and exacerbated hematopoietic function. In this descriptive manuscript, the characteristic images that suggested the presence of gastrointestinal inflammatory damage and related imaging presentations of individual patients were enumerated, analyzed and described. RESULTS: All eligible patients with SAA had CT imaging abnormalities that suggested the presence of an impaired intestinal barrier and increased epithelial permeability. The inflammatory damages were concurrently present in the small intestine, the ileocecal region and the large intestines. Some readily identified imaging signs, such as bowel wall thickening with mural stratification ("water holo sign", "fat holo sign", intramural gas and subserosal pneumatosis) and mesenteric fat proliferation (fat stranding and "creeping fat sign"), fibrotic bowel wall thickening, "balloon sign", rugged colonic configuration, heterogeneity in the bowel wall texture, and adhered and clustered small bowel loop (including various patterns of "abdominal cocoon"), occurred at a high incidence, which suggested that the damaged gastrointestinal tract is a common inflammatory niche responsible for the systemic inflammatory stresses and the exacerbated hematopoietic failure in patients with SAA. Particularly, the "fat holo sign" was present in 7 patients, a rugged colonic configuration was present in 10 patients, the adhesive bowel loop was present in 15 patients, and extraintestinal manifestations suggestive of tuberculosis infections were present in 5 patients. According to the imaging features, a suggestive diagnosis of Crohn's disease was made in 5 patients, ulcerative colitis in 1 patient, chronic periappendiceal abscess in 1 patient, and tuberculosis infection in 5 patients. Other patients were diagnosed with chronic enteroclolitis with acutely aggravated inflammatory damage. CONCLUSION: Patients with SAA had CT imaging patterns that suggested the presence of active chronic inflammatory conditions and aggravated inflammatory damage during flared inflammatory episodes.

6.
Environ Technol ; 44(11): 1613-1625, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34792432

ABSTRACT

Hypersaline wastewater is a typical industrial wastewater produced by iron and steel metallurgy, food material processing and other industries. Aiming at a waste liquid produced by mechanical vapour recompression evaporation and concentration in Tianjin coastal industrial zone, an environment-friendly supercritical water oxidation technology was used to efficiently remove the high-content organic matter in the hypersaline wastewater concentrate (HWC). A comparison of the degradation effects of various oxidants in the supercritical state showed that hydrogen peroxide (H2O2) could be used as a suitable agent for processing the HWC. The reaction parameters were systematically optimised by single-factor experiment and response surface design. The degradation mechanism and reaction characteristics were analyzed using gas chromatography mass spectrometry. Solid residues were characterised by field emission scanning electron microscope. The results indicated that when the dosage of hydrogen peroxide was 6.39%, the reaction temperature was 380°C, the reaction time was about 90 min and the optimal total organic carbon removal rate was 96.22%. Furthermore, it was found that hydroxyl radicals produced by hydrogen peroxide initiated the bond breaking and ring-opening reactions in organic matter, which eventually degraded organic matter into water and carbon dioxide.


Subject(s)
Wastewater , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Hydrogen Peroxide/chemistry , Organic Chemicals , Oxidation-Reduction , Water , Water Pollutants, Chemical/chemistry
7.
Environ Res ; 216(Pt 4): 114777, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36370818

ABSTRACT

Facile fabrication of porous carbon materials from waste halogenated plastic is highly attractive but frequently hampered due to potential release of halogenated organic pollutants. In this study, a novel type of carbon hybrid was tentatively synthesized from a real-world halogenated plastic as an inexpensive carbon source by sub/supercritical carbon dioxide carbonization technique. It was found that halogen-free carbon carrier was advantageously synthesized through carbonization of halogenated plastic without using catalysts due to zip depolymerization, random chain cracking and free radical reactions induced by sub/supercritical carbon dioxide technique. Exhibiting with more abundant functional groups including C-O, CO groups than pyrolytic carbon carrier, the derived carbon carrier demonstrated excellent performance in selective recovery of lithium from cathode powder with highest recovery efficiency of 93.6%. Mechanism study indicated that cathode powder was transformed into low-valence states of transition metals/metal oxides and released lithium as lithium carbonate due to collapse of oxygen framework via carbothermic reduction. This work provides an applicable and green process for synthesis of alternative carbon carrier from waste halogenated plastic and its application as carbothermic reductant in lithium recovery.


Subject(s)
Carbon Dioxide , Lithium , Electric Power Supplies , Recycling , Plastics , Powders
8.
Chinese Journal of Surgery ; (12): 777-783, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-985822

ABSTRACT

Objective: To investigate the influence of extending the waiting time on tumor regression after neoadjuvant chemoradiology (nCRT) in patients with locally advanced rectal cancer (LARC). Methods: Clinicopathological data from 728 LARC patients who completed nCRT treatment at the First Affiliated Hospital, Naval Medical University from January 2012 to December 2021 were collected for retrospective analysis. The primary research endpoint was the sustained complete response (SCR). There were 498 males and 230 females, with an age (M(IQR)) of 58 (15) years (range: 22 to 89 years). Logistic regression models were used to explore whether waiting time was an independent factor affecting SCR. Curve fitting was used to represent the relationship between the cumulative occurrence rate of SCR and the waiting time. The patients were divided into a conventional waiting time group (4 to <12 weeks, n=581) and an extended waiting time group (12 to<20 weeks, n=147). Comparisons regarding tumor regression, organ preservation, and surgical conditions between the two groups were made using the t test, Wilcoxon rank sum test, or χ2 test as appropriate. The Log-rank test was used to elucidate the survival discrepancies between the two groups. Results: The SCR rate of all patients was 21.6% (157/728). The waiting time was an independent influencing factor for SCR, with each additional day corresponding to an OR value of 1.010 (95%CI: 1.001 to 1.020, P=0.031). The cumulative rate of SCR occurrence gradually increased with the extension of waiting time, with the fastest increase between the 9th to <10th week. The SCR rate in the extended waiting time group was higher (27.9%(41/147) vs. 20.0%(116/581), χ2=3.901, P=0.048), and the organ preservation rate during the follow-up period was higher (21.1%(31/147) vs. 10.7%(62/581), χ2=10.510, P=0.001). The 3-year local recurrence/regrowth-free survival rates were 94.0% and 91.1%, the 3-year disease-free survival rates were 76.6% and 75.4%, and the 3-year overall survival rates were 95.6% and 92.2% for the conventional and extended waiting time groups, respectively, with no statistical differences in local recurrence/regrowth-free survival, disease-free survival and overall survival between the two groups (χ2=1.878, P=0.171; χ2=0.078, P=0.780; χ2=1.265, P=0.261). Conclusions: An extended waiting time is conducive to tumor regression, and extending the waiting time to 12 to <20 weeks after nCRT can improve the SCR rate and organ preservation rate, without increasing the difficulty of surgery or altering the oncological outcomes of patients.

9.
Waste Manag ; 153: 13-19, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36029533

ABSTRACT

The present study reports a sequential, non-acid process for effective recovery of copper and precious metals from mobile phone printed circuit boards. In this process, gold and silver were first enriched during the synthesis process of cuprous chloride and then leached by thiosulfate method. Results indicated that the distribution of gold and silver in the liquid and solid phases during the synthesis of cuprous chloride process was affected by the [Cu]/[Cu2+] ratio. Enrichment of gold and silver in the residue after the cuprous chloride synthesis could be achieved by the adjusting the [Cu]/[Cu2+] ratio. The silver and gold leaching rates of the residue after cuprous chloride synthesis (93.8 % silver and 99 % gold) were much higher than those of the raw PCB sample (27.0 % silver and 14.2 % gold) under the same conditions. This process has the advantages of high leaching efficiency, high leaching rate and avoiding the use of HNO3 or aqua regia commonly used for copper, gold and silver recovery. Thus, this study offers a promising and environmentally friendly method for recovering valuable metals from e-waste.


Subject(s)
Cell Phone , Electronic Waste , Copper/chemistry , Electronic Waste/analysis , Gold/chemistry , Recycling/methods , Silver/chemistry , Thiosulfates/chemistry
10.
Preprint in English | bioRxiv | ID: ppbiorxiv-501719

ABSTRACT

The Coronavirus disease 19 (COVID-19) pandemic has accumulated over 550 million confirmed cases and more than 6.34 million deaths worldwide. Although vaccinations has largely protected the population through the last two years, the effect of vaccination has been increasingly challenged by the emerging SARS-CoV-2 variants. Although several therapeutics including both monoclonal antibodies and small molecule drugs have been used clinically, high cost, viral escape mutations, and potential side effects have reduced their efficacy. There is an urgent need to develop a low cost treatment with wide-spectrum effect against the novel variants of SARS-CoV-2. Here we report a product of equine polyclonal antibodies that showed potential broad spectrum neutralization effect against the major variants of SARS-CoV-2. The equine polyclonal antibodies were generated by horse immunization with the receptor binding domain (RBD) of SARS-CoV-2 spike protein and purified from equine serum. A high binding affinity between the generated equine antibodies and the RBD was observed. Although designed against the RBD of the early wild type strain sequenced in 2020, the equine antibodies also showed a highly efficient neutralization capacity against the major variants of SARS-CoV-2, including the recent BA.2 Omicron variant (IC50 =1.867g/ml) in viral neutralization assay in Vero E6 cells using live virus cultured. The broad-spectrum neutralization capacity of the equine antibodies was further confirmed using pseudovirus neutralization assay covering the major SARS-CoV-2 variants including wild type, alpha, beta, delta, and omicron, showing effective neutralization against all the tested strains. Ex vivo reconstructed human respiratory organoids representing nasal, bronchial, and lung epitheliums were employed to test the treatment efficacy of the equine antibodies. Antibody treatment protected the human nasal, bronchial, and lung epithelial organoids against infection of the novel SARS-CoV-2 variants challenging public health, the Delta and Omicron BA.2 isolates, by reducing >95% of the viral load. The equine antibodies were further tested for potential side effects in a mouse model by inhalation and no significant pathological feature was observed. Equine antibodies, as a mature medical product, have been widely applied in the treatment of infectious diseases for more than a century, which limits the potential side effects and are capable of large scale production at a low cost. A cost-effective, wide-spectrum equine antibody therapy effective against the major SARS-CoV-2 variants can contribute as an affordable therapy to cover a large portion of the world population, and thus potentially reduce the transmission and mutation of SARS-CoV-2.

11.
J Thorac Dis ; 14(5): 1306-1318, 2022 May.
Article in English | MEDLINE | ID: mdl-35693596

ABSTRACT

Background: For metachronous second pulmonary adenocarcinoma (msPAD) in patients with resected PAD, the method to distinguish tumour clonality has not yet been well established, which makes it difficult to determine accurate staging and predict prognosis. Methods: Patients received surgery for the primary and encountered msPAD were recruited into the Surveillance, Epidemiology, and End Results database. We extracted overall survival 1 (OS1) for the primary, overall survival 2 (OS2) for the msPAD, and defined interval survival as the interval time between the first and second PAD. Based on the nomogram and recursive partitioning analysis, a tumor, node, metastasis staging system (TNM)-like risk stratification system was established for OS2 on the premise of suspending the dispute of tumor clonality. Results: A total of 1,045 patients were identified. There is no significant association between interval survival and OS2. A TNM-like risk stratification system was established based on the independent pathological factors for prognosis, including tumor diameter (2nd), node metastasis (2nd), grade (2nd), and extrapulmonary metastasis (2nd). The proposed risk stratification system present well capacity in predicting and stratifying prognosis. Compared with the TNM stage system, the proposed risk stratification system presents a smaller Akaike information criterion (AIC) but larger c-index, and generates higher accuracy to predict prognosis at 160 months of follow-up according to the time-dependent receiver operating curve (ROC) curve. Conclusions: In conclusion, the TNM-like risk stratification appears to be suitable for prognostic prediction and risk stratification for msPAD patients with former PAD resection. This model validates and refines the known classification rules based on the easily collected variables, and highlights potentially clinical implications.

12.
J Thorac Dis ; 14(1): 90-101, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35242371

ABSTRACT

BACKGROUND: For metachronous second pulmonary squamous cell carcinoma (msPSC) in patients with resected PSC, the method to distinguish tumour clonality has not yet been well established, which makes it difficult to determine accurate staging and predict prognosis. METHODS: Patients who underwent surgery for first PSC and encountered msPSC were recruited from the Surveillance, Epidemiology, and End Results (SEER) database. We extracted overall survival 1 (OS1) for the first PSC, overall survival 2 (OS2) for msPSC, and interval survival for the time interval between the first and second PSC. The nomogram was calibrated for OS2, and recursive partitioning analysis (RPA) was performed for risk stratification. RESULTS: A total of 617 patients were identified. Several independent prognostic factors were identified and integrated into the nomogram for OS2, including gender, age (2nd), nodal status (1st), node metastasis (2nd), and extrapulmonary metastasis (2nd). The calibration curves showed optimal agreement between the predictions and actual observations, and the c-index was 0.678. Surgery was associated with longer survival for msPSC patients. The prognosis of sublobectomy was comparable and inferior to that of lobectomy in the low- and moderate-risk groups, respectively. Radiotherapy was associated with better outcomes in patients who did not undergo surgery. CONCLUSIONS: The RPA-based clinical nomogram appears to be suitable for the prognostic prediction and risk stratification of OS2 in msPSC. This practical system may help clinicians make decisions and design clinical studies.

13.
J Hazard Mater ; 432: 128746, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35339831

ABSTRACT

Upcycling of waste plastics as functional materials is a new approach for synthesizing low-cost and durable adsorbents with zwitterionic property. Herein, a facile process for recycling blending waste plastics to fabricate zwitterionic plastic-g-hydrogel (ZPH) for simultaneous adsorbing cationic and anionic heavy metals was developed. ZPH possessed high affinities for cations and anions in both acid and alkaline conditions owing to its zwitterionic property, and the maximum adsorption capacities of Pb2+, Cd2+, Ba2+, and Cr(VI) (Cr2O72-) were 132.13, 85.58, 69.92 and 85.15 mg/g, respectively. Mechanism study indicated the incompatibility of blending plastics was skillfully overcome through the crosslinking between sodium alginate (SA)/chitosan (CTS) and plastics. Cations were adsorbed onto ZPH via electrostatic interaction, cation exchange and coordination interactions with Cl/N/O-containing groups. Furthermore, the reduction of Cr(VI) to Cr(III) was another important path for ZPH to capture anionic Cr2O72-, and subsequently Cr(III) was adsorbed via coordination interaction and cation exchange. Moreover, the regeneration experiment showed ZPH possessed excellent reusability and stable structure. Accordingly, this research provides a profitable approach for recycling blending plastics, and ZPH has potentials for industrial application in wastewater treatment or contaminated site remediation with complex heavy metals pollution.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Anions , Cations/chemistry , Hydrogels/chemistry , Metals, Heavy/chemistry , Plastics , Water Pollutants, Chemical/chemistry
14.
Phys Med Biol ; 67(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35042208

ABSTRACT

Objective. To construct an analytical model instead of local effect modeling for the prediction of the biological effectiveness of nanoparticle radiosensitization.Approach. An extended local effects model is first proposed with a more comprehensive description of the nanoparticles mediated local killing enhancements, but meanwhile puts forward challenging issues that remain difficult and need to be further studied. As a novel method instead of local effect modeling, a survival modification framework of compound Poisson additive killing is proposed, as the consequence of an independent additive killing by the assumed equivalent uniform doses of individual nanoparticles per cell under the LQ model. A compound Poisson killing (CPK) model based on the framework is thus derived, giving a general expression of nanoparticle mediated LQ parameter modification. For practical use, a simplified form of the model is also derived, as a concentration dependent correction only to theαparameter, with the relative correction (α″/α) dominated by the mean number, and affected by the agglomeration of nanoparticles per cell. For different agglomeration state, a monodispersion model of the dispersity factorη = 1, and an agglomeration model of 2/3 < Î· < 1, are provided for practical prediction of (α″/α) value respectively.Main results. Initial validation by the radiosensitization of HepG2 cells by carbon dots showed a high accuracy of the CPK model. In a safe range of concentration (0.003-0.03µgµl-1) of the carbon dots, the prediction errors of the monodispersion and agglomeration models were both within 2%, relative to the clonogenic survival data of the sensitized HepG2 cells.Significance. The compound Poisson killing model provides a novel approach for analytical prediction of the biological effectiveness of nanoparticle radiosensitization, instead of local effect modeling.


Subject(s)
Carbon , Nanoparticles , Cell Survival
15.
Front Oncol ; 11: 760752, 2021.
Article in English | MEDLINE | ID: mdl-34804961

ABSTRACT

Carbon ion radiotherapy (CIRT) is a useful and advanced technique for prostate cancer. This study sought to investigate the clinical efficacy and translational research for prostate cancer with carbon ion radiotherapy. We integrated the data from published articles, clinical trials websites, and our data. The efficacy of CIRT for prostate cancer was assessed in terms of overall survival, biochemical recurrence-free survival, and toxicity response. Up to now, clinical treatment of carbon ion radiotherapy has been carried in only five countries. We found that carbon ion radiotherapy induced little genitourinary and gastrointestinal toxicity when used for prostate cancer treatment. To some extent, it led to improved outcomes in overall survival, biochemical recurrence-free survival than conventional radiotherapy, especially for high-risk prostate cancer. Carbon ion radiotherapy brought clinical benefits for prostate cancer patients, and quality of life assessment indicated that CIRT affected patients to a lesser extent. Potential biomarkers from our omics-based study could be used to predict the efficacy of prostate cancer with CIRT. Carbon ion radiotherapy brought clinical benefits for prostate cancer patients. The omics-based translational research may provide insights into individualized therapy.

16.
Stem Cell Res Ther ; 12(1): 453, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34380571

ABSTRACT

Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.


Subject(s)
Hair Follicle , Stem Cells , Hair , Hedgehog Proteins , Wnt Signaling Pathway
17.
Cancer Manag Res ; 13: 2191-2199, 2021.
Article in English | MEDLINE | ID: mdl-33688262

ABSTRACT

PURPOSE: The purpose of this study was to assess the potential of 99mTc-labeled PSMA-SPECT/CT and diffusion-weighted image (DWI) for predicting treatment response after carbon ion radiotherapy (CIRT) in prostate cancer. PATIENTS AND METHODS: We prospectively registered 26 patients with localized prostate cancer treated with CIRT. All patients underwent 99mTc-labeled PSMA-SPECT/CT and multiparametric magnetic resonance imaging (MRI) before and after CIRT. The tumor/background ratio (TBR) and mean apparent diffusion coefficient (ADCmean) were measured on the tumor and the percentage changes before and after therapy (ΔTBR and ΔADCmean) were calculated. Patients were divided into two groups: good response and poor response according to clinical follow-up. RESULTS: The median follow up time was 38.3months. The TBR was significantly decreased (p=0.001), while the ADCmean was significantly increased compared with the pretreatment value (p<0.001). The ΔTBR and ΔADCmean were negatively correlated with each other (p = 0.002). On ROC curve analysis for predicting treatment response, the area under the ROC curve (AUC) of ΔTBR (0.867) for predicting good response was higher than that of ΔADCmean (0.819). The AUC of combined with ΔTBR and ΔADCmean (0.895) was higher than that of either ΔADCmean or ΔTBR alone. The combined use of ΔTBR and ΔADCmean showed 91.4% sensitivity and 95.2% specificity. CONCLUSION: Our preliminary data indicate that the changes of TBR and ADCmean maybe an early bio-marker for predicting prognosis after CIRT in localized prostate cancer patients. In addition, the ΔTBR seems to be a more powerful prognostic factor than ΔADCmean in prostate cancer treated with CIRT.

18.
Waste Manag ; 124: 283-292, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33640668

ABSTRACT

Recycling of spent Li-ion batteries is crucial for achieving sustainable development of battery industry. Current recycling processes mainly focus on valuable metals but less attention has been paid to spent graphite, which generally ends up as secondary waste. In this study, a process for preparing graphene and recovering Li in anode as a by-product from spent graphite was developed. The key point was to re-charge the spent LIBs to generate lithium graphite intercalation compounds. The lithium graphite intercalation compounds were then subjected to a hydrolysis procedure and graphene could be produced through ultrasonic treatment via the expansion/micro-explosion mechanism. Experimental results demonstrated that 1-4 layered graphene could be efficiently produced when spent Li-ion batteries with beyond 50% capacity were re-charged. The prepared graphene showed high quantity containing few defects (ID/IG = 0.33, C/O = 13.2 by energy dispersive spectroscopy and C/O = 8.8 by X-ray photoelectron spectroscopy). In addition, Li was simultaneously recovered in the form of battery-grade lithium carbonate in the above process. Economic analysis indicated that the graphene production cost was extremely low ($540/ton) compared to that of commercial graphene.


Subject(s)
Graphite , Lithium , Electric Power Supplies , Electrodes , Recycling
19.
Ann Surg Oncol ; 28(6): 3025-3033, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33073346

ABSTRACT

BACKGROUND: The impact of the number of examined lymph nodes (ELNs) on stage correction and prognostication in patients with esophageal squamous cell carcinoma (ESCC) who underwent right transthoracic esophagectomy is still unclear. METHODS: Patients with ESCC who underwent right transthoracic esophagectomy at Sun Yat-sen University Cancer Center between January 1997 and December 2013 were retrospectively enrolled. The Cox proportional hazards regression model was used to determine the effect of ELN count on overall survival. The impact of ELN count on stage correction was evaluated using the hypergeometric distribution and Bayes theorem and ß-binomial distribution estimation, respectively. The threshold of ELNs was determined using the LOWESS smoother and piecewise linear regression. RESULTS: Among the 875 included patients, greater ELNs were associated with a higher rate of nodal metastasis. Significant association between staging bias and the number of ELNs is only observed through the Bayes method. The ELN count did not impact 90-day mortality but significantly impacted long-term survival (adjusted hazard ratio [aHR] 0.986), especially in those patients with node-negative disease (aHR 0.972). In patients with node-negative disease, cut-point analysis showed a threshold ELN count of 21. CONCLUSIONS: A greater number of ELNs is associated with more accurate node staging and better long-term survival in resected ESCC patients. We recommended harvesting at least 21 LNs to acquire accurate staging and long-term survival information for patients with declared node-negative disease using the right thoracic approach.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Head and Neck Neoplasms , Bayes Theorem , Esophageal Neoplasms/pathology , Esophageal Neoplasms/surgery , Esophageal Squamous Cell Carcinoma/surgery , Esophagectomy , Humans , Lymph Node Excision , Lymph Nodes/pathology , Lymph Nodes/surgery , Lymphatic Metastasis , Neoplasm Staging , Retrospective Studies , Survival Rate
20.
Front Oncol ; 11: 808216, 2021.
Article in English | MEDLINE | ID: mdl-35223457

ABSTRACT

BACKGROUND: We aimed at determining the safety and feasibility of spot-scanning carbon ion radiotherapy (CIRT) for patients with localized prostate cancer. METHODS: We enrolled 118 patients with localized prostate cancer who underwent treatment with spot-scanning CIRT at the Shanghai Proton and Heavy Ion Center (SPHIC) from January 2016 to December 2020. The dose was gradually increased from relative biological effectiveness (RBE)-weighted dose (DRBE) = 59.2-65.6 Gy in 16 fractions. The primary endpoint was the occurrence of acute and late toxicities, while the secondary endpoints were biochemical relapse-free survival (bRFS), distant metastasis-free survival (DMFS), prostate cancer-specific survival (PCSS), and overall survival (OS). RESULTS: The median follow-up time was 30.2 months (4.8-62.7 months). Acute grade 1 and 2 genitourinary (GU) toxicities were 15.3% and 18.6%, while acute grade 1 and 2 gastrointestinal (GI) toxicities were 2.5% and 0%, respectively. Late grade 1 and 2 GU toxicities were 4.2% and 1.7%, respectively. No late GI toxicity was observed. Moreover, there were no cases of severe acute or late toxicity (≥ grade 3). No significant association were observed between the factors and the acute GU toxicities, except for clinical target volume (CTV) (p = 0.031) on multivariate analysis. The 2-year bRFS, DMFS, PCSS, and OS were 100%, 100%, 100%, and 98.8%, respectively. CONCLUSION: The 2-year outcomes were encouraging, providing additional and useful information on the feasibility and safety of spot-scanning CIRT for treating prostate cancer. Thus, we recommend long-term follow-up and prospective multicentered studies to reinforce the role of CIRT in the management of localized prostate cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...