Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroendocrinology ; 107(1): 1-23, 2018.
Article in English | MEDLINE | ID: mdl-28910819

ABSTRACT

BACKGROUND/AIMS: The tumor suppressor p53 is rarely mutated in gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) but they frequently show a strong expression of negative regulators of p53, rendering these tumors excellent targets for a p53 recovery therapy. Therefore, we analyzed the mechanisms of a p53 recovery therapy on intestinal neuroendocrine tumors in vitro and in vivo. METHODS: By Western blot and immunohistochemistry, we found that in GEP-NEN biopsy material overexpression of MDM2 was present in intestinal NEN. Therefore, we analyzed the effect of a small-molecule inhibitor, nutlin-3a, in p53 wild-type and mutant GEP-NEN cell lines by proliferation assay, flow cytometry, immunofluorescence, Western blot, and by multiplex gene expression analysis. Finally, we analyzed the antitumor effect of nutlin-3a in a xenograft mouse model in vivo. During the study, the tumor volume was determined. RESULTS: The midgut wild-type cell line KRJ-I responded to the treatment with cell cycle arrest and apoptosis. By gene expression analysis, we could demonstrate that nutlins reactivated an antiproliferative p53 response. KRJ-I-derived xenograft tumors showed a significantly decreased tumor growth upon treatment with nutlin-3a in vivo. Furthermore, our data suggest that MDM2 also influences the expression of the oncogene FOXM1 in a p53-independent manner. Subsequently, a combined treatment of nutlin-3a and cisplatin (as chemoresistance model) resulted in synergistically enhanced antiproliferative effects. CONCLUSION: In summary, MDM2 overexpression is a frequent event in p53 wild-type intestinal neuroendocrine neoplasms and therefore recovery of a p53 response might be a novel personalized treatment approach in these tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Imidazoles/pharmacology , Intestinal Neoplasms/pathology , Neuroendocrine Tumors/pathology , Piperazines/pharmacology , Adult , Aged , Animals , Forkhead Box Protein M1/antagonists & inhibitors , Humans , Mice , Middle Aged , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...