Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
2.
Crit Rev Microbiol ; 50(1): 87-104, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36608263

ABSTRACT

Escherichia coli is one of the most notorious pathogens for its ability to adapt, colonize, and proliferate in different habitats through a multitude of acquired virulence factors. Its presence affects the food-processing industry and causes food poisoning, being also a major economic burden for the food, agriculture, and health sectors. Bacteriophages are emerging as an appealing strategy to mitigate bacterial pathogens, including specific E. coli pathovars, without exerting a deleterious effect on humans and animals. This review globally analyzes the applied research on E. coli phages for veterinary, food, and human use. It starts by describing the pathogenic E. coli pathotypes and their relevance in human and animal context. The idea that phages can be used as a One Health approach to control and interrupt the transmission routes of pathogenic E. coli is sustained through an exhaustive revision of the recent literature. The emerging phage formulations, genetic engineering and encapsulation technologies are also discussed as a means of improving phage-based control strategies, with a particular focus on E. coli pathogens.


Subject(s)
Bacteriophages , Escherichia coli Infections , One Health , Animals , Humans , Escherichia coli/genetics , Bacteriophages/genetics , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology , Food Contamination/prevention & control
3.
Food Microbiol ; 113: 104251, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37098418

ABSTRACT

The viability of SARS-CoV-2 on food surfaces and its propagation through the food chain has been discussed by several stakeholders, as it may represent a serious public health problem, bringing new challenges to the food system. This work shows for the first time that edible films can be used against SARS-CoV-2. Sodium alginate-based films containing gallic acid, geraniol, and green tea extract were evaluated in terms of their antiviral activity against SARS-CoV-2. The results showed that all these films have strong in vitro antiviral activity against this virus. However, a higher concentration of the active compound (1.25%) is needed for the film containing gallic acid to achieve similar results to those obtained for lower concentrations of geraniol and green tea extract (0.313%). Furthermore, critical concentrations of the active compounds in the films were used to evaluate their stability during storage. Results showed that gallic acid-loaded films lose their activity from the second week of storage, while films with geraniol and green tea extract only show a drop in activity after four weeks. These results highlight the possibility of using edible films and coatings as antiviral materials on food surfaces or food contact materials, which may help to reduce the spreading of viruses through the food chain.


Subject(s)
COVID-19 , Edible Films , Humans , Alginates , Food Packaging/methods , SARS-CoV-2 , Antioxidants , Plant Extracts/pharmacology , Tea , Antiviral Agents/pharmacology , Gallic Acid/pharmacology
4.
Microorganisms ; 10(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35630360

ABSTRACT

The thermoalkalophilic membrane-associated esterase E34Tt from Thermus thermophilus HB27 was cloned and expressed in Kluyveromyces lactis (KLEST-3S esterase). The recombinant enzyme was tested as a biocatalyst in aqueous and organic media. It displayed a high thermal stability and was active in the presence of 10% (v/v) organic solvents and 1% (w/v) detergents. KLEST-3S hydrolysed triglycerides of various acyl chains, which is a rare characteristic among carboxylic ester hydrolases from extreme thermophiles, with maximum activity on tributyrin. It also displayed interfacial activation towards triacetin. KLEST-3S was also tested as a biocatalyst in organic media. The esterase provided high yields for the acetylation of alcohols. In addition, KLEST-3S catalyzed the stereoselective hydrolysis of (R,S)-ibuprofen methyl ester (87% ee). Our results indicate that KLEST-3S may be a robust and efficient biocatalyst for application in industrial bioconversions.

5.
Polymers (Basel) ; 14(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35406232

ABSTRACT

Our society lives in a time of transition where traditional petroleum-based polymers/plastics are being replaced by more sustainable alternative materials. To consider these bioproducts as more viable options than the actual ones, it is demanded to ensure that they are fully biodegradable or compostable and that there is no release of hazardous compounds to the environment with their degradation. It is then essential to adapt the legislation to support novel specific guidelines to test the biodegradability of each biopolymer in varied environments, and consequently, establish consistent data to design a coherent labeling system. This review work aims to point out the current standards that can serve as a basis for the characterization of biopolymers' biodegradation profile in different environments (soil, compost, and aquatic systems) and identify other laboratory methodologies that have been adopted for the same purpose. With the information gathered in this work, it was possible to identify remaining gaps in existing national and international standards to help establish new validation criteria to be introduced in future research and policies related to bioplastics to boost the sustainable progress of this rising industry.

6.
Molecules ; 26(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34946676

ABSTRACT

The functional food market has been in a state of constant expansion due to the increasing awareness of the impact of the diet on human health. In the search for new natural resources that could act as a functional ingredient for the food industry, microalgae represent a promising alternative, considering their high nutritional value and biosynthesis of numerous bioactive compounds with reported biological properties. In the present work, the phytochemical profile, antioxidant activity, and enzymatic inhibitory effect aiming at different metabolic disorders (Alzheimer's disease, Type 2 diabetes, and obesity) were evaluated for the species Porphyridium purpureum, Chlorella vulgaris, Arthorspira platensis, and Nannochloropsis oculata. All the species presented bioactive diversity and important antioxidant activity, demonstrating the potential to be used as functional ingredients. Particularly, P. purpureum and N. oculata exhibited higher carotenoid and polyphenol content, which was reflected in their superior biological effects. Moreover, the species P. purpureum exhibited remarkable enzymatic inhibition for all the analyses.


Subject(s)
Antioxidants , Enzyme Inhibitors , Microalgae/chemistry , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Swine
7.
Sci Rep ; 11(1): 10175, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986380

ABSTRACT

Zebra mussel (Dreissena polymorpha) is considered as one of the 100 most harmful IAS in the world. Traditional detection methods have limitations, and PCR based environmental DNA detection has provided interesting results for early warning. However, in the last years, the development of isothermal amplification methods has received increasing attention. Among them, loop-mediated isothermal amplification (LAMP) has several advantages, including its higher tolerance to the presence of inhibitors and the possibility of naked-eye detection, which enables and simplifies its potential use in decentralized settings. In the current study, a real-time LAMP (qLAMP) method for the detection of Dreissena polymorpha was developed and tested with samples from the Guadalquivir River basin, together with two real-time PCR (qPCR) methods using different detection chemistries, targeting a specific region of the mitochondrial gene cytochrome C oxidase subunit I. All three developed approaches were evaluated regarding specificity, sensitivity and time required for detection. Regarding sensitivity, both qPCR approaches were more sensitive than qLAMP by one order of magnitude, however the qLAMP method proved to be as specific and much faster being performed in just 9 min versus 23 and 29 min for the qPCR methods based on hydrolysis probe and intercalating dye respectively.


Subject(s)
Dreissena/genetics , Environmental Monitoring/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Animals , DNA Primers , Genes, Mitochondrial/genetics , Introduced Species , Models, Theoretical , Real-Time Polymerase Chain Reaction/methods , Rivers , Spain , Time Factors
8.
Nutrients ; 13(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669189

ABSTRACT

Obesity is a chronic disease resulting from an imbalance between energy intake and expenditure. The growing relevance of this metabolic disease lies in its association with other comorbidities. Obesity is a multifaceted disease where intestinal hormones such as cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and peptide YY (PYY), produced by enteroendocrine cells (EECs), have a pivotal role as signaling systems. Receptors for these hormones have been identified in the gut and different brain regions, highlighting the interconnection between gut and brain in satiation mechanisms. The intestinal microbiota (IM), directly interacting with EECs, can be modulated by the diet by providing specific nutrients that induce environmental changes in the gut ecosystem. Therefore, macronutrients may trigger the microbiota-gut-brain axis (MGBA) through mechanisms including specific nutrient-sensing receptors in EECs, inducing the secretion of specific hormones that lead to decreased appetite or increased energy expenditure. Designing drugs/functional foods based in bioactive compounds exploiting these nutrient-sensing mechanisms may offer an alternative treatment for obesity and/or associated metabolic diseases. Organ-on-a-chip technology represents a suitable approach to model multi-organ communication that can provide a robust platform for studying the potential of these compounds as modulators of the MGBA.


Subject(s)
Brain/metabolism , Food Analysis , Gastrointestinal Microbiome , Gastrointestinal Tract/physiology , Satiety Response/drug effects , Gastrointestinal Tract/microbiology , Humans
9.
Food Chem ; 345: 128741, 2021 May 30.
Article in English | MEDLINE | ID: mdl-33601650

ABSTRACT

Bovine whey protein was hydrolysed using cardosins A and B purified from dried flowers of Cynara cardunculus by combining diafiltration, anion-exchange chromatography and ultrafiltration. The proteolysis experiments were performed using different whey protein concentrations and enzyme/substrate (E/S) ratios. Complete hydrolysis of the main whey proteins, ß-Lactoglobulin (ß-Lg) and α-lactalbumin (α-La), was achieved after 4 h, at E/S ratios of 1/150 U/mg, regardless the initial protein concentration. In previous reports, the authors suggested that cardosins could not hydrolyse ß-lactoblogulin. However, our promising results open up new possibilities to further explore the action of cardosins on whey proteins for the production of bioactive peptides.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Cynara/enzymology , Lactoglobulins/metabolism , Plant Proteins/metabolism , Animals , Antioxidants/metabolism , Aspartic Acid Endopeptidases/isolation & purification , Cattle , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Flowers/enzymology , Flowers/metabolism , Hydrolysis , Lactalbumin/metabolism , Lactoglobulins/analysis , Plant Proteins/isolation & purification , Substrate Specificity
10.
Food Chem ; 344: 128670, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33272755

ABSTRACT

In this work rhamnolipids were evaluated as surfactants for the production of nanostructured lipid carriers (NLCs). NLCs were produced by melt-emulsification using ultra-homogenisation followed by ultrasonication and different ratios of medium-chain-triglycerides and glycerol monostearate (lipid phase) were tested. NLCs presented sizes and polydispersity index values ranged between 97 and 120 nm and 0.20-0.26, respectively. Transmission electron microscopy observations confirmed the size and the spherical morphology of the NLCs. The thermal analysis and X-ray diffraction showed that the amount of solid lipid (glycerol monostearate) influences the melting, crystallisation and enthalpy of NLCs and their degree of crystallinity. Results showed that NLCs were more stable at 4 °C and the best formulation (1% of water phase, 0.05% of biosurfactant and solid:liquid ratio of 10:90) was stable for 30 days. This work showed the possibility of using rhamnolipids to produce NLCs and represent an important step for the development of lipid-based nanosystems using biosurfactants.


Subject(s)
Chemical Phenomena , Drug Carriers/chemistry , Glycolipids/chemistry , Nanostructures/chemistry , Particle Size , Surface-Active Agents/chemistry
11.
Mar Drugs ; 18(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333921

ABSTRACT

Microalgae are microorganisms with a singular biochemical composition, including several biologically active compounds with proven pharmacological activities, such as anticancer, antioxidant and anti-inflammatory activities, among others. These properties make microalgae an interesting natural resource to be used as a functional ingredient, as well as in the prevention and treatment of diseases, or cosmetic formulations. Nevertheless, natural bioactives often possess inherent chemical instability and/or poor solubility, which are usually associated with low bioavailability. As such, their industrial potential as a health-promoting substance might be severely compromised. In this context, encapsulation systems are considered as a promising and emerging strategy to overcome these shortcomings due to the presence of a surrounding protective layer. Diverse systems have already been reported in the literature for natural bioactives, where some of them have been successfully applied to microalgae compounds. Therefore, this review focuses on exploring encapsulation systems for microalgae biomass, their extracts, or purified bioactives for food, pharmaceutical, and cosmetic purposes. Moreover, this work also covers the most common encapsulation techniques and types of coating materials used, along with the main findings regarding the beneficial effects of these systems.


Subject(s)
Cosmetics/administration & dosage , Food , Microalgae/chemistry , Pharmaceutical Preparations/administration & dosage , Animals , Antioxidants , Drug Delivery Systems , Humans
12.
Food Microbiol ; 92: 103570, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32950155

ABSTRACT

Dairy products have been implicated in foodborne infections caused by different bacterial pathogens. Among them, Listeria monocytogenes is of particular concern due to its ubiquity, resistance to sanitation processes and high mortality rates resulting from infection. These issues make the development of novel methods for the rapid detection of this bacterium of high interest. The evaluation of a novel multiplex real-time Recombinase Polymerase Amplification method including an internal amplification control is reported in the present work. The method performance was compared to that of the European reference method (ISO 11290-1) for the detection of the species in samples from 40 commercial products, including 14 UHT milk samples, 16 hard cheese samples, 6 infant dairy preparation samples and 4 fresh cheese samples. A limit of detection below 10 cfu/25 g or mL sample was achieved, and values higher than 90% were obtained for relative sensitivity, specificity, accuracy, positive and negative predictive values and the index (kappa) of concordance. Analysis was achieved within one working day, compared to the six days required using the ISO method. Moreover, slight modification of the ISO 11290-1 method to include secondary enrichment in half Fraser broth resulted in the confirmation of all positive samples.


Subject(s)
Dairy Products/microbiology , Food Analysis/methods , Listeria monocytogenes/genetics , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Animals , Cattle , Cheese/microbiology , Food Analysis/standards , Food Contamination/analysis , Listeria monocytogenes/isolation & purification , Milk/microbiology
13.
Foods ; 9(8)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32824086

ABSTRACT

Understanding consumers' food choices and the psychological processes involved in their preferences is crucial to promote more mindful eating regulation and guide food design. Fortifying foods minimizing the oral dryness, rough, and puckering associated with many functional ingredients has been attracting interest in understanding oral astringency over the years. A variety of studies have explored the sensorial mechanisms and the food properties determining astringency perception. The present review provides a deeper understanding of astringency, a general view of the oral mechanisms involved, and the exciting variety of the latest methods used to direct and indirectly quantify and simulate the astringency perception and the specific mechanisms involved.

14.
Food Chem Toxicol ; 134: 110814, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31520669

ABSTRACT

Nanotechnology applied to food and beverage packaging has created enormous interest in recent years, but in the same time there are many controversial issues surrounding nanotechnology and food. The benefits of engineered nanoparticles (ENPs) in food-contact applications are accompanied by safety concerns due to gaps in understanding of their possible toxicology. In case of incorporation in food contact polymers, the first step to consumer exposure is the transfer of ENPs from the polymer to the food. Hence, to improve understanding of risk and benefit, the key questions are whether nanoparticles can be released from food contact polymers and under which conditions. This review has two main goals. Firstly, it will presents the current advancements in the application of ENPs in food and beverage packaging sector to grant active and intelligent properties. A particular focus will be placed on current demands in terms of risk assessment strategies associated with the use ENPs in food contact materials (FCMs), i.e. up-to-date migration/cytotoxicity studies of ENPs which are partly contradictory. Food matrix effects are often ignored, and may have a pronounced impact on the behaviour of ENPs in the gastrointestinal tract (GIT). A standardized food model (SFM) for evaluating the toxicity and fate of ingested ENPs was recently proposed and herein discussed with the aims to offer an overview to the reader. It is therefore clear that further systematic research is needed, which must account for interactions and transformations of ENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Secondly, the review provides an extensive analysis of present market dynamics on ENPs in food/beverage packaging moving beyond concept to current industrial applications.


Subject(s)
Food Packaging , Nanotechnology , Europe , Food Packaging/legislation & jurisprudence
15.
Food Chem ; 275: 480-488, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30724223

ABSTRACT

A one-step anion-exchange chromatography method (NaCl gradient elution on a DEAE Sepharose™ Fast Flow gel column) was developed to purify α-lactalbumin (α-LA) from whey protein isolate. α-LA nearly 100% pure (based on the total protein content) was obtained with a yield of about 39%. Besides pure α-LA, which was the main objective of this work, highly pure ß-lactoglobulin was also obtained with a yield of about 59%. The high purity of the obtained α-LA samples allowed its use to synthesise protein nanotubes with excellent gelation properties for their use as food thickeners and bioactive carriers. The samples' purity degree obtained (based on the total protein content) was critical in the formation of proper nanotubes instead of random aggregates, which produced opaque and weak gels, less useful for food applications.


Subject(s)
Chromatography, Ion Exchange/methods , Lactalbumin/isolation & purification , Nanotechnology , Nanotubes/chemistry , Whey Proteins/chemistry , Animals , Lactalbumin/chemistry
16.
Carbohydr Polym ; 198: 601-610, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30093039

ABSTRACT

The cellulose from soybean hull, a waste without value from the argentine agriculture, was successfully obtained by using two different treatments: the traditional alkaline-bleaching pathway and from a simple pre-alkaline treatment at low temperatures. The comparison of both methods yielded similar results regarding its ability to open the lignin cellulosic structure of the hull and the total elimination of the lignin content. Fourier Transform Infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM), 13C nuclear magnetic resonance (13C-RMN) and Raman spectroscopy were used to characterize the structures and the properties of cellulose. The results showed that cellulose can be easily obtained with just an alkaline pre-treatment of 5% (w/v) NaOH during 40 h at 50 °C and free of any lignin content. The attachment of different functional groups, such as -COOH and (CH3)3N+, changed the physicochemical properties of the obtained cellulose, showing mayor crystalline structure, and consequently modifying the swelling capacity and its ability to adsorb model proteins.

17.
Food Chem ; 246: 156-163, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29291834

ABSTRACT

The treatment of gluten-related disorders is based on a lifelong, and strict, gluten-free diet. Thus, reliable and sensitive methods are required to detect the presence of gluten contamination. Traditional techniques rely on the detection of these proteins based on specific antibodies, but recent approaches go for an indirect route detecting the DNA that indicates the presence of cereals with gluten content. In the current study two different DNA amplification techniques, real-time PCR (qPCR) and real-time Loop-mediated isothermal AMPlification (qLAMP), were evaluated for their capability to detect and quantify gluten. Different detection strategies, based on these DNA amplification techniques, were tested. Even though good specificity results were obtained with the different approaches, overall qPCR proved more sensitive than qLAMP. This is the first study reporting a qLAMP based-method for the detection of gluten-containing cereals, along with its evaluation in comparison with qPCR.


Subject(s)
Food Analysis/methods , Glutens/analysis , Nucleic Acid Amplification Techniques/methods , Edible Grain , Flour/analysis , Glutens/genetics , Humans , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
18.
Food Chem ; 219: 169-178, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27765213

ABSTRACT

A ß-Lactoglobulin fraction (r-ßLg) was isolated from whey hydrolysates produced with cardosins from Cynara cardunculus. The impact of the hydrolysis process on the r-ßLg structure and the rheological properties of heat-induced gels obtained thereafter were studied at different pH values. Differences were observed between r-ßLg and commercial ß-Lg used as control. Higher values for the fluorescence emission intensity and red shifts of the emission wavelength of r-ßLg suggested changes in its tertiary structure and more solvent-exposed tryptophan residues. Circular dichroism spectra also supported these evidences indicating that hydrolysis yielded an intermediate (non-native) ß-Lg state. The thermal history of r-ßLg through the new adopted conformation improved the microstructure of the gels at acidic pH. So, a new microstructure with better rheological characteristics (higher conformational flexibility and lower rigidity) and greater water holding ability was founded for r-ßLg gel. These results were reflected in the microstructural analysis by scanning electron microscopy.


Subject(s)
Lactoglobulins/chemistry , Lactoglobulins/isolation & purification , Whey/chemistry , Animals , Cattle , Circular Dichroism , Fluorescence , Gels/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Hydrolysis , Lactoglobulins/ultrastructure , Microscopy, Electron, Scanning , Rheology , Tryptophan/analysis , Whey Proteins
19.
Food Chem ; 198: 45-53, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26769503

ABSTRACT

A ß-Lactoglobulin fraction (r-ßLg) was isolated from milk whey hydrolysates produced with cardosins from Cynara cardunculus. The impact of the technological process on the r-ßLg structure and how in turn this determined its heat-induced gelation was investigated. Results were analysed taking pure ß-Lg (p-ßLg) as control sample. The process induced changes in the r-ßLg native conformation causing exposure of hydrophobic groups, lower thermal stability and also, shorter thermal treatments needed to give rise to non-native and aggregated species. At pH 3.2, r-ßLg and p-ßLg solutions exhibited two gelation steps, with the advantage that r-ßLg protein may form stable gels at lower temperature than p-ßLg. At pH 7.2, a specific thermo-viscoelastic stability to 73 °C was found, which corresponded to the gel point in both protein solutions. The difference was that while for p-ßLg solution in sol state δ<45° (solid-like), however for r-ßLg solution δ>45° (fluid-like).


Subject(s)
Lactoglobulins/chemistry , Whey Proteins/chemistry , Whey/chemistry , Animals , Cattle , Gels
20.
PLoS One ; 9(2): e87190, 2014.
Article in English | MEDLINE | ID: mdl-24520326

ABSTRACT

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).


Subject(s)
Acrylic Resins/chemistry , Food Packaging , Hydrogels/chemistry , Models, Theoretical , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Temperature , Acrylates/chemistry , Calorimetry, Differential Scanning , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Nanogels , Particle Size , Solutions , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...