Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(8): 7767-7778, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36873007

ABSTRACT

Purpose: This study aimed at determining the optimum concentration of hydroxypropyl methylcellulose (HPMC) as hydrogel matrix and citric acid-locust bean gum (CA-LBG) as negative matrix for controlled release tablet formulation. In addition, the study was to determine the effect of CA-LBG and HPMC. CA-LBG accelerates the disintegration of tablets into granules so that the HPMC granule matrix swells immediately and controls drug release. The advantage of this method is that the tablets do not produce large HPMC gel lumps without drug (ghost matrix) but form HPMC gel granules, which can be rapidly degraded after all of the drug is released. Methods : The experiment followed the simplex lattice design to obtain the optimum tablet formula with CA-LBG and HPMC concentrations as optimization factors. Tablet production by the wet granulation method and ketoprofen is the model of the active ingredient. The kinetics of ketoprofen release was studied using several models. Results : Based on the coefficients of each polynomial equation that HPMC and CA-LBG increased the value of angle of repose (29.91:27.87), tap index (18.99:18.77), hardness (13.60:13.32), friability (0.41:0.73), and release of ketoprofen (52.48:99.44). Interaction of HPMC and CA-LBG increased the value of angle of repose (3.25), tap index (5.64), and hardness (2.42). Interaction of HPMC and CA-LBG too decreased the friability value (-1.10) and release of ketoprofen (-26.36). The Higuchi, Korsmeyer-Peppas, and Hixson-Crowell model is the kinetics of eight experimental tablet formulas. Conclusions : The optimum concentrations of HPMC and CA-LBG for controlled release tablets are 32.97 and 17.03%, respectively. HPMC, CA-LBG, and a combination of both affect the physical quality of tablet and tablet mass. CA-LBG is a new excipient candidate that can control drug release from tablets by the matrix disintegration mechanism on the tablet.

2.
Res Pharm Sci ; 14(5): 378-390, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31798654

ABSTRACT

Solidification of a preconcentrate lipid formulation namely self-nano emulsifying drug delivery system (SNEDDS) is required to achieve feasibility, flexibility, and a new concept of "dry nano-emulsion". The purpose of this study was to assess the effect of SNEDDS loading and ethanol as a diluent on the solidification of pitavastatin supersaturable SNEDDS (S-SNEDDS). A 22 full factorial design approach with a center point addition as a curvature was implemented to determine the effect of S-SNEDDS loading and ethanol on the physical characteristics, namely flowability, compactibility, and drug release behavior. Vibrational spectra, thermal behavior, and morphology of solid S-SNEDDS formulation were also evaluated. The results indicated that there was no interaction between S-SNEDDS and carrier, based on vibrational spectra. However, thermal behaviors (enthalpy and weight loss) were depending on SNEDDS loading. Thereafter, the ethanol as a diluent of preconcentrated formulation had no effect on the morphology of carrier structure. However, the S-SNEDDS loading altered the structure of carrier owing to either solubilization or abrasion processes. The statistical model suggested that ethanol as diluent reduced the flowability, compactibility, and drug releases. Meanwhile, the liquid SNEDDS loading affected the reducing of flowability and compactibility. Finally, solidification without diluent and 20% lipid formulation load was recommended. In addition, it was very useful because of ease on handling, flexibility for further formulation, and desired characteristics of final solid dosage form.

3.
Adv Pharm Bull ; 9(4): 609-618, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31857965

ABSTRACT

Purpose: Recently, a self-nanoemulsifying drug delivery system (SNEDDS) has shown great improvement in the enhancement of drug bioavailability. The selection of appropriate compositions in the SNEDDS formulation is the fundamental step towards developing a successful formulation. This study sought to evaluate the effectiveness of fractional factorial design (FFD) in the selection and screening of a SNEDDS composition. Furthermore, the most efficient FFD approach would be applied to the selection of SNEDDS components. Methods: The types of oil, surfactant, co-surfactant, and their concentrations were selected as factors. 26 full factorial design (FD) (64 runs), 26-1 FFD (32 runs), 26-2 FFD (16 runs), and 26-3 FFD (8 runs) were compared to the main effect contributions of each design. Ca-pitavastatin (Ca-PVT) was used as a drug model. Screening parameters, such as transmittance, emulsification time, and drug load, were selected as responses followed by particle size along with zeta potential for optimized formulation. Results: The results indicated that the patterns of 26 full FD and 26-1 for both main effects and interactions were similar. 26-3 FFD lacked adequate precision when used for screening owing to the limitation of design points. In addition, capryol, Tween 80, and transcutol P were selected to be developed in a SNEDDS formulation with a particle size of 69.7± 5.3 nm along with a zeta potential of 33.4± 2.1 mV. Conclusion: Herein, 26-2 FFD was chosen as the most efficient and adequate design for the selection and screening of SNEDDS composition. The optimized formulation fulfilled the requirement of a quality target profile of a nanoemulsion.

4.
Heliyon ; 5(8): e02337, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31485527

ABSTRACT

Esterification of citric acid (CA) with locust bean gum (LBG) was prepared by hydrochloric acid (HCl) as a catalyst and UV irradiation (254 nm) as esterification energy. This study aims to determine the best conditions of esterification. Other than that, it is to know the effect of amount HCl and UV irradiation time for the esterification process of CA with LBG. The amounts of HCl are 0.18 and 0.30 M, while the variations of UV irradiation time are 75 and 100 minutes. Polyester (CA-LBG) were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometer (XRD), esterification degree, and viscosity. Parameters for determining the best conditions for esterification are esterification degree and viscosity. The best conditions of esterification were obtained by using 0.30 M mL HCl and 100 minutes of UV irradiation time resulted in CA-LBG having a value of esterification degree 9.69 % and viscosity 7.46 cPs. HCl accelerates protonation on the O atoms and the formation of positive C atoms of carbonyl groups of citric acid. The time of UV irradiation gives the longer energy for the bond formation between the positive C atoms of the carbonyl group and the O atoms of the hydroxyl group at C-6 atoms of mannose and galactose.

SELECTION OF CITATIONS
SEARCH DETAIL
...