Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Immunol Immunopathol ; 254: 110519, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36434944

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has rapidly spread worldwide. The monitoring of animals has shown that certain species may be susceptible to be infected with the virus. The present study aimed to evaluate the presence of SARS-CoV-2 antibodies by ELISA and virus neutralization (VN) in pets from owners previously confirmed as COVID-19-positive in Argentina. Serum samples of 38 pets (seven cats and 31 dogs) were obtained for SARS-CoV-2 antibody detection. Three out of the seven cats and 14 out of the 31 dogs were positive for SARS-CoV-2 by ELISA, and one cat and six dogs showed the presence of neutralizing antibodies in which the cat and two of the six dogs showed high titers. Another dog from which three serum samples had been obtained within eight months from the diagnosis of its owner showed the presence of antibodies at different times by both ELISA and VN. However, the results showed that the antibodies decreased slightly from the first to the third sample. Our results provide evidence that SARS-CoV-2 infection in pets living with COVID-19-positive humans from Argentina during the outbreak of SARS-CoV-2 can be detected by serology assay.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Humans , Dogs , Animals , Cats , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2 , Disease Outbreaks , Antibodies, Viral , Antibodies, Neutralizing , Cat Diseases/epidemiology , Dog Diseases/epidemiology
2.
Vet Microbiol ; 260: 109179, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34271305

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has rapidly spread worldwide. Studies of transmission of the virus carried out in animals have suggested that certain animals may be susceptible to infection with SARS-CoV-2. The aim of the present study was to investigate the infection of SARS-CoV-2 in pets (18 cats and 20 dogs) from owners previously confirmed as COVID-19-positive. Oropharyngeal and rectal swabs were taken and analyzed by real-time RT-PCR assays, while blood samples were taken for antibody detection. Of the total pets analyzed, one cat was found reactive to SARS-CoV-2 by real-time RT-PCR of an oropharyngeal and a rectal swab. This cat presented only sneezing as a clinical sign. Serological analysis confirmed the presence of antibodies in the serum sample from this cat, as well as in the serum from another cat non-reactive to real-time RT-PCR. Complete sequence and phylogenetic analysis allowed determining that the SARS-CoV-2 genome belonged to the B.1.499 lineage. This lineage has been reported in different provinces of Argentina, mainly in the Metropolitan Area of Buenos Aires. This study notifies the first detection of the natural infection and molecular analysis of SARS-CoV-2 in a cat from Argentina whose owner where COVID-19-positive. Although there is currently no evidence that cats can spread COVID-19, results suggest that health authorities should test pets with COVID-19-positive owners.


Subject(s)
Cat Diseases/virology , Coronavirus Infections/veterinary , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Animals , Argentina , COVID-19 Nucleic Acid Testing/veterinary , Cat Diseases/diagnosis , Cats , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , DNA, Complementary/chemistry , Dogs , Female , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/veterinary , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2/classification
3.
Virus Res ; 296: 198332, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33549642

ABSTRACT

The complete gag gene from small ruminant lentiviruses (SRLV) encodes for a polyprotein of 55 kDa, known as p55gag. p55gag presents multiple antigenic epitopes, which can be recognized by antibodies, increasing the opportunity to detect SRLV-positive animals. Therefore, this polyprotein is considered an excellent candidate to use in diagnostic tests to detect antibodies against SRLV. Different studies have suggested that the selection of the recombinant antigen, which must be representative of the virus strains circulating in the test population, is crucial to avoid false negative results. Thus, the use of proteins from different viral strains isolated from goats or sheep of a given region or country may be a useful strategy to increase the ability to detect SRLV-infected animals. In the present study, the pMAL-p5X vector was used to express and purify p55gag (now called rp55gag for recombinant polyprotein 55 gag). The cloned gene was inserted downstream from the malE gene of Escherichia coli, which encodes a maltose-binding protein (MBP), resulting in the expression of an MBP fusion protein. The complete gag gene was amplified by RT-PCR. Finally, after digestion, the product was cloned into the pMAL-p5X vector and used to transform E. coli ER2325 cells. After the purification of MBP-rp55gag by affinity chromatography, the eluted fraction was observed by SDS-PAGE and Western Blot (WB). The WB was carried out with 85 serum samples from small ruminants previously analysed and compared by two commercial ELISAs. The results show that 76 of the serum samples were concordant with those by both ELISAs. Regarding the other nine serum samples, which showed discordant results between both ELISAs, were positive by WB. The results thus show that the rp55gag could be considered as an antigen in a confirmatory diagnostic assay to detect SRLV by WB. For this purpose, a future study with a high number of sera to determine the test specificity and sensitivity, using the p55gag of the circulating strain in Argentina will be necessary.


Subject(s)
Goat Diseases , Lentivirus Infections , Sheep Diseases , Animals , Escherichia coli , Goat Diseases/diagnosis , Goats , Lentivirus/genetics , Lentivirus Infections/diagnosis , Lentivirus Infections/veterinary , Maltose-Binding Proteins/genetics , Phylogeny , Polyproteins/genetics , Ruminants , Sheep , Sheep Diseases/diagnosis
4.
Open Vet J ; 9(1): 33-37, 2019 04.
Article in English | MEDLINE | ID: mdl-31086763

ABSTRACT

Bovine leukemia virus (BLV) is the agent responsible for enzootic bovine leukosis, the most common neoplastic disease in cattle. The horn fly, a major hematophagous pest of cattle, is able to transmit different diseases in cattle. However, its implication in BLV transmission under a natural environment is still discussed. The objectives of this work were to determine the presence of BLV in horn flies (by sequencing) and to evaluate the ability of horn flies to transmit BLV to cattle (through an experimental assay under a natural environment). To demonstrate the presence of BLV in the flies, 40 horn flies were collected from a BLV-positive cow with a sweep net and 10 pools with four horn-fly mouthparts each were prepared. The presence of BLV was determined by nested polymerase chain reaction and sequencing. To demonstrate BLV transmission, other 40 flies were collected from the same BLV-positive cow with a sweep net. Eight homogenates containing five horn-fly mouthparts each were prepared and injected to eight cows of different breeds, and blood samples were collected every 21 days. Then, to evaluate the ability of horn flies to transmit BLV to grazing cattle under natural conditions, both infected and uninfected cattle from the experimental transmission assay were kept together in the same paddock with more than 200 horn flies per animal for 120 days. Blood samples were collected every 20 days and the number of flies was determined. The sequencing results confirmed the presence of the provirus in horn flies. The results also confirmed that BLV transmission is a possible event, at least experimentally. However, the role of horn flies as vectors of BLV under a natural grazing system is still discussed.


Subject(s)
Enzootic Bovine Leukosis/transmission , Insect Vectors/virology , Leukemia Virus, Bovine/isolation & purification , Muscidae/virology , Animals , Argentina , Cattle , Female , Insect Vectors/physiology , Muscidae/physiology , Polymerase Chain Reaction/veterinary , Proviruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...