Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (148)2019 06 01.
Article in English | MEDLINE | ID: mdl-31205311

ABSTRACT

Recognition of surface-tethered antigens by the B cell receptor (BCR) triggers the formation of an immune synapse (IS), where both signaling and antigen uptake are coordinated. IS formation involves dynamic actin remodeling accompanied by the polarized recruitment to the synaptic membrane of the centrosome and associated intracellular organelles such as lysosomes and the Golgi apparatus. Initial stages of actin remodeling allow B cells to increase their cell surface and maximize the quantity of antigen-BCR complexes gathered at the synapse. Under certain conditions, when B cells recognize antigens associated to rigid surfaces, this process is coupled to the local recruitment and secretion of lysosomes, which can facilitate antigen extraction. Uptaken antigens are internalized into specialized endo-lysosome compartments for processing into peptides, which are loaded onto major histocompatibility complex II (MHC-II) molecules for further presentation to T helper cells. Therefore, studying organelle dynamics associated with the formation of an IS is crucial to understanding how B cells are activated. In the present article we will discuss both imaging and a biochemical technique used to study changes in intracellular organelle positioning and cytoskeleton rearrangements that are associated with the formation of an IS in B cells.


Subject(s)
Antigen Presentation , B-Lymphocytes/immunology , Cell Polarity , Centrosome/physiology , Organelles/physiology , Receptors, Antigen, B-Cell/immunology , Actins/metabolism , Animals , Antigen Presentation/immunology , Antigens/metabolism , Antigens, Surface , B-Lymphocytes/cytology , Cell Membrane/metabolism , Centrosome/metabolism , Cytoskeleton/metabolism , Histocompatibility Antigens Class II , Humans , Lysosomes/metabolism , Organelles/metabolism , Synaptic Membranes/metabolism
2.
Nat Commun ; 10(1): 735, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30760704

ABSTRACT

Inter-organelle signalling has essential roles in cell physiology encompassing cell metabolism, aging and temporal adaptation to external and internal perturbations. How such signalling coordinates different organelle functions within adaptive responses remains unknown. Membrane traffic is a fundamental process in which membrane fluxes need to be sensed for the adjustment of cellular requirements and homeostasis. Studying endoplasmic reticulum-to-Golgi trafficking, we found that Golgi-based, KDEL receptor-dependent signalling promotes lysosome repositioning to the perinuclear area, involving a complex process intertwined to autophagy, lipid-droplet turnover and Golgi-mediated secretion that engages the microtubule motor protein dynein-LRB1 and the autophagy cargo receptor p62/SQSTM1. This process, here named 'traffic-induced degradation response for secretion' (TIDeRS) discloses a cellular mechanism by which nutrient and membrane sensing machineries cooperate to sustain Golgi-dependent protein secretion.


Subject(s)
Autophagy , Lipid Droplets/metabolism , Lysosomes/metabolism , Receptors, Peptide/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Dyneins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , HeLa Cells , Humans , Lysosomes/ultrastructure , Microscopy, Electron, Transmission , Microtubules/metabolism , Microtubules/ultrastructure , Protein Transport , Sequestosome-1 Protein/metabolism , Signal Transduction
3.
FEMS Microbiol Lett ; 362(17): fnv135, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26293911

ABSTRACT

Bacterial regulatory networks of gene expression include the interaction of diverse types of molecules such as the small non-coding RNAs (sRNAs) and their cognate messenger RNAs (mRNAs). In this study, we demonstrated that the Salmonella Typhimurium sRNA SroC is significantly expressed between the late-exponential and stationary phase of growth in an rpoS-dependent manner. The expression of flagellar genes predicted as targets of this sRNA was quantitatively analyzed in both a ΔsroC mutant and a SroC-overexpressing (pSroC) strain. Deletion of sroC increased flagellar gene expression (i.e. flhBAE and fliE). Conversely, overexpression of SroC reduced flhBAE and fliE expression. These observations correlated with phenotypic evaluation of motility, where sroC deletion slightly increased motility, which in turn, was drastically reduced upon overexpression of SroC. The effects of deletion and overexpression of sroC in biofilm formation were also examined, where the ΔsroC and pSroC strains exhibited a reduced and increased ability to form biofilm, respectively. Furthermore, electron microscopy revealed that the wild-type strain overexpressing SroC had a non-flagellated phenotype. Taken together, our results showed that S. Typhimurium sRNA SroC modulates the flagellar synthesis by down-regulating the expression of flhBAE and fliE genes.


Subject(s)
Gene Expression Regulation, Bacterial , RNA, Small Untranslated/genetics , RNA, Small Untranslated/physiology , Salmonella typhimurium/growth & development , Salmonella typhimurium/genetics , Bacterial Proteins/genetics , Biofilms/growth & development , Flagella/genetics , Flagella/metabolism , Microscopy, Electron , RNA, Messenger , Salmonella typhimurium/ultrastructure
4.
Biochem Biophys Res Commun ; 450(1): 641-5, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24937451

ABSTRACT

Typically, the expression of sRNAs is activated in response to environmental stimuli in order to regulate gene expression through post-transcriptional mechanisms. In the present work we show that the Salmonellatyphimurium paralogous sRNAs RyhB-1 and RyhB-2 are induced in response to the nitrosating agent S-nitrosoglutathione (GSNO). Inactivation of these sRNAs decreased S. typhimurium resistance to GSNO and increased the levels of nitrosylated proteins. These results prompted us to evaluate a possible role of these sRNAs in nitrosative stress resistance. RNA profiling was used as a screen to identify novel RyhB-1 and RyhB-2 regulated targets. A subset of genes was filtered based on their potential role in the response to nitrosative stress and their expression was analyzed by quantitative RT-PCR in wild type, single and double mutant strains (ΔryhB1, ΔryhB2 and ΔryhB1 ΔryhB2) treated with GSNO. In response to GSNO RyhB-1 and RyhB-2 negatively regulate the expression of the genes cyoABC (cytochrome bo oxidase), cydB (cytochrome bd oxidase), cybC (cytochrome b-562), and positively regulate the nirBCD operon (nitrite reductase system). Together, these results suggest that RyhB-1 and RyhB-2 finely tune the expression of genes coding for cytochrome oxidases and the nitrate reductase system, allowing the cell to cope with GSNO-induced stress.


Subject(s)
Oxidative Stress/physiology , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , S-Nitrosoglutathione/pharmacology , Salmonella typhimurium/physiology , Anti-Infective Agents/pharmacology , Oxidative Stress/drug effects , Salmonella typhimurium/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...