Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Chem Neuroanat ; 129: 102237, 2023 04.
Article in English | MEDLINE | ID: mdl-36736441

ABSTRACT

The number of people diagnosed with metabolic syndrome (MetS) has increased dramatically to reach alarming proportions worldwide. The origin of MetS derives from bad eating habits and sedentary lifestyle. Most people consume foods high in carbohydrates and saturated fat. In recent years, it has been reported that alterations in insulin at the brain level could have an impact on the appearance of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, dementia, depression, and other types of disorders that compromise brain function. These alterations have been associated with damage to the structure and function of neurons located in the reptilian and limbic systems, a decrease in dendritic arborization and an exacerbated inflammatory state that impaired learning and memory and increased in the state of stress and anxiety. Although the molecular mechanisms induced by MetS to cause neurodegeneration are not fully understood. The aim of this study is to know the effect of the intake of hypercaloric diets on the structure and function of neurons located in the frontal cortex, hypothalamus and hippocampus and its impact on behavior in rats with metabolic syndrome. In conclusion, the present study illustrated that chronic exposure to hypercaloric diets, with a high content of sugars and saturated fatty acids, induces a proinflammatory state and exacerbates oxidative stress in brain regions such as the hypothalamus, hippocampus, and frontal cortex, leading to dysfunction. metabolism, neuronal damage, and recognition memory loss.


Subject(s)
Alzheimer Disease , Metabolic Syndrome , Animals , Rats , Carbohydrates , Diet , Diet, High-Fat , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Neurons/metabolism , Memory Disorders/metabolism
2.
Synapse ; 76(9-10): 1-16, 2022 08.
Article in English | MEDLINE | ID: mdl-35709361

ABSTRACT

Cadmium (Cd) is a heavy metal classified as a carcinogen whose exposure could affect the function of the central nervous system. Studies suggest that Cd modifies neuronal morphology in the hippocampus and affects cognitive tasks. The oxidative stress pathway is proposed as a mechanism of toxicity. However, this mechanism is not precise yet. This study aimed to evaluate the effect of Cd administration on oxidative stress markers in the male rat's hippocampus. Male Wistar rats were divided into (1) control (drinking water) and (2) treatment with Cd (32.5 ppm of cadmium chloride (CdCl2 ) in water). The Cd was administered for 2, 3, and 4 months. The results show that the oral administration of CdCl2 increased the concentration of Cd in plasma and hippocampus, and this response is time-dependent on its administration. Likewise, it caused an increase in lipid peroxidation and nitrosative stress markers. Moreover, it increased reactive astrogliosis and antioxidant enzyme activity. Consequently, the progression of the oxidative response exacerbated neurodegeneration in hippocampal cells. Our results suggest that Cd exposure induces a severe oxidative response that contributes critically to hippocampal neurodegeneration. It is suggested that exposure to Cd increases the risk of developing neurological diseases, which contributes to a decrease in the quality of life of the human and the environment in which it lives.


Subject(s)
Antioxidants , Cadmium , Animals , Antioxidants/pharmacology , Cadmium/metabolism , Cadmium/toxicity , Cadmium Chloride/metabolism , Cadmium Chloride/toxicity , Hippocampus/metabolism , Humans , Lipid Peroxidation , Male , Oxidative Stress , Quality of Life , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...