Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Sensors (Basel) ; 23(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36617081

ABSTRACT

In this paper, a ratiometric approach to sensing temperature variations is shown using specialty fiber optic devices. We analyzed the transmission response of cascaded segments of multicore fibers (MCFs), and dissimilar lengths were found to generate an adequate scheme for ratiometric operation. The perturbation of optical parameters in the MCFs translates to a rich spectral behavior in which some peaks increase their intensity while others decrease their intensity. Thus, by selecting opposite-behavior peaks, highly sensitive ratiometric measurements that provide robustness against spurious fluctuations can be performed. We implemented this approach using seven-core fiber (SCF) segments of 5.8 cm and 9.9 cm. To test the system's response under controlled perturbations, we heated one of the segments from ambient temperature up to 150 °C. We observed defined peaks with opposite behavior as a function of temperature. Two pairs of peaks within the interrogation window were selected to perform ratiometric calculations. Ratiometric measurements exhibited sensitivities 6-14 times higher than single-wavelength measurements. A similar trend with enhanced sensitivity in both peak pairs was obtained. In contrast to conventional interferometric schemes, the proposed approach does not require expensive facilities or micrometric-resolution equipment. Moreover, our approach has the potential to be realized using commercial splicers, detectors, and filters.

2.
Front Chem ; 10: 1017305, 2022.
Article in English | MEDLINE | ID: mdl-36311415

ABSTRACT

Cardiac troponin I (cTnI) is a biomarker widely related to acute myocardial infarction (AMI), one of the leading causes of death around the world. Point-of-care testing (POCT) of cTnI not only demands a short turnaround time for its detection but the highest accuracy levels to set expeditious and adequate clinical decisions. The analytical technique Surface-enhanced Raman spectroscopy (SERS) possesses several properties that tailor to the POCT format, such as its flexibility to couple with rapid assay platforms like microfluidics and paper-based immunoassays. Here, we analyze the strategies used for the detection of cTnI by SERS considering POCT requirements. From the detection ranges reported in the reviewed literature, we suggest the diseases other than AMI that could be diagnosed with this technique. For this, a section with information about cardiac and non-cardiac diseases with cTnI release, including their release kinetics or cut-off values are presented. Likewise, POCT features, the use of SERS as a POCT technique, and the biochemistry of cTnI are discussed. The information provided in this review allowed the identification of strengths and lacks of the available SERS-based point-of-care tests for cTnI and the disclosing of requirements for future assays design.

3.
Sci Rep ; 11(1): 18383, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526569

ABSTRACT

We demonstrate optical fiber sensors based on highly coupled multicore fibers operating with the optical Vernier effect. The sensors are constructed using a simple device incorporating single-mode fibers (SMFs) and a segment of a multicore fiber. In particular, we evaluated the performance of a sensor based on a seven-core fiber (SCF) spliced at both ends to conventional SMFs, yielding a versatile arrangement for realizing Vernier-based fiber sensors. The SMF-SCF-SMF device can be fabricated using standard splicing procedures and serve as a "building block" for both, reflection and transmission sensing configurations. As demonstrated with our experimental results, the Vernier arrangements can yield a ten-fold increase in sensitivity for temperature measurements compared to a conventional single SMF-SCF-SMF device, thereby confirming the enhanced sensitivity that can be attained with this optical effect. Furthermore, through theoretical analysis, we obtain the relevant parameters that must be optimized in order to achieve an optimal sensitivity for a specific application. Our findings thus provide the necessary guidelines for constructing Vernier-based sensors with all-fiber devices based on highly coupled multicore optical fibers, which constitutes an ideal framework to develop highly sensitive fiber sensors for different applications.

4.
Biosensors (Basel) ; 11(3)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670852

ABSTRACT

The diagnosis of respiratory viruses of zoonotic origin (RVsZO) such as influenza and coronaviruses in humans is crucial, because their spread and pandemic threat are the highest. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique with promising impact for the point-of-care diagnosis of viruses. It has been applied to a variety of influenza A virus subtypes, such as the H1N1 and the novel coronavirus SARS-CoV-2. In this work, a review of the strategies used for the detection of RVsZO by SERS is presented. In addition, relevant information about the SERS technique, anthropozoonosis, and RVsZO is provided for a better understanding of the theme. The direct identification is based on trapping the viruses within the interstices of plasmonic nanoparticles and recording the SERS signal from gene fragments or membrane proteins. Quantitative mono- and multiplexed assays have been achieved following an indirect format through a SERS-based sandwich immunoassay. Based on this review, the development of multiplex assays that incorporate the detection of RVsZO together with their specific biomarkers and/or secondary disease biomarkers resulting from the infection progress would be desirable. These configurations could be used as a double confirmation or to evaluate the health condition of the patient.


Subject(s)
COVID-19/diagnosis , Immunoassay/methods , Influenza A virus/isolation & purification , Influenza, Human/diagnosis , SARS-CoV-2/isolation & purification , Spectrum Analysis, Raman/methods , COVID-19 Testing/instrumentation , COVID-19 Testing/methods , Equipment Design , Humans , Immunoassay/instrumentation , Influenza A Virus, H1N1 Subtype/isolation & purification , Spectrum Analysis, Raman/instrumentation
5.
Sensors (Basel) ; 20(15)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751262

ABSTRACT

An all-fiber approach is presented to measure surface tension. The experimental realization relies on the use of a specialty fiber, a so-called two-hole fiber (THF), which serves a two-fold purpose: providing a capillary channel to produce bubbles while having the means to measure the power reflected at the end facet of the fiber core. We demonstrate that provided a controlled injection of gas into the hollow channels of the THF, surface tension measurements are possible by simply tracking the Fresnel reflection at the distal end of the THF. Our results show that the characteristic times involved in the bubble formation process, from where the surface tension of the liquids under test is retrieved, can be measured from the train of pulses generated by the continuous formation and detachment of bubbles.

6.
Front Chem ; 8: 612076, 2020.
Article in English | MEDLINE | ID: mdl-33392153

ABSTRACT

The indirect determination of the most used herbicide worldwide, glyphosate, was achieved by the SERS technique using hemin chloride as the reporter molecule. An incubation process between hemin and glyphosate solutions was required to obtain a reproducible Raman signal on SERS substrates consisting of silicon decorated with Ag nanoparticles (Si-AgNPs). At 780 nm of excitation wavelength, SERS spectra from hemin solutions do not show extra bands in the presence of glyphosate. However, the hemin bands increase in intensity as a function of glyphosate concentration. This allows the quantification of the herbicide using as marker band the signal associated with the ring breathing mode of pyridine at 745 cm-1. The linear range was from 1 × 10-10 to 1 × 10-5 M and the limit of detection (LOD) was 9.59 × 10-12 M. This methodology was successfully applied to the quantification of the herbicide in honey. From Raman experiments with and without silver nanoparticles, it was possible to state that the hemin is the species responsible for the absorption in the absence or the presence of the herbicide via vinyl groups. Likewise, when the glyphosate concentration increases, a subtle increase occurs in the planar orientation of the vinyl group at position 2 in the porphyrin ring of hemin over the silver surface, favoring the reduction of the molecule. The total Raman signal of the hemin-glyphosate incubated solutions includes a maximized electromagnetic contribution by the use of the appropriate laser excitation, and chemical contributions related to charge transfer between silver and hemin, and from resonance properties of Raman scattering of hemin. Incubation of the reporter molecule with the analyte before the conjugation with the SERS substrate has not been explored before and could be extrapolated to other reporter-analyte systems that depend on a binding equilibrium process.

7.
Article in English | MEDLINE | ID: mdl-27901630

ABSTRACT

Because of the intensive use of pharmaceutical substances in human life, studies on the detection of these chemical compounds and their metabolites as pollutants in water bodies are continuously reported. Some pharmaceutical agents are associated with adverse effects to aquatic life, even at very low concentrations (ng L-1 to µg L-1). For instance, the presence of antibiotics and hormones has been associated with increasing proliferation of antibiotic resistant pathogens and feminization and masculinization of some aquatic organisms. Currently, new attempts are being made to minimize or fully remove these types of pollutants from aquatic systems to protect the environment and human health. In this regard, physicochemical and biological treatments are among the most promising technologies for the treatment of wastewater containing pharmaceutical pollutants. These treatments are green alternatives for the degradation of hazardous organic compounds into nontoxic by-products. Here, we review some of the physicochemical and biological treatment methods used for the removal of the most extensively used antibiotics and hormones. Enzymatic oxidation, photocatalysis and electrochemical oxidation are described in terms of the aforementioned pharmaceutically active compounds (PhACs). The use of membrane technologies to separate different groups of antibiotics and hormones prior to biologic or physicochemical treatment methods is also addressed.


Subject(s)
Anti-Bacterial Agents/chemistry , Pharmaceutical Preparations/chemistry , Wastewater , Water Pollutants, Chemical/chemistry , Water Purification/methods , Humans , Oxidation-Reduction
8.
Article in English | MEDLINE | ID: mdl-26565183

ABSTRACT

We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts.

9.
Sensors (Basel) ; 15(10): 26929-39, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26512664

ABSTRACT

A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC) of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF) highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.


Subject(s)
Fiber Optic Technology/methods , Equipment Design/methods , Temperature
10.
Front Comput Neurosci ; 5: 167, 2014.
Article in English | MEDLINE | ID: mdl-25566043

ABSTRACT

Learning under uncertainty is a common task that people face in their daily life. This process relies on the cognitive ability to adjust behavior to environmental demands. Although the biological underpinnings of those cognitive processes have been extensively studied, there has been little work in formal models seeking to capture the fundamental dynamic of learning under uncertainty. In the present work, we aimed to understand the basic cognitive mechanisms of outcome processing involved in decisions under uncertainty and to evaluate the relevance of previous experiences in enhancing learning processes within such uncertain context. We propose a formal model that emulates the behavior of people playing a well established paradigm (Iowa Gambling Task - IGT) and compare its outcome with a behavioral experiment. We further explored whether it was possible to emulate maladaptive behavior observed in clinical samples by modifying the model parameter which controls the update of expected outcomes distributions. Results showed that the performance of the model resembles the observed participant performance as well as IGT performance by healthy subjects described in the literature. Interestingly, the model converges faster than some subjects on the decks with higher net expected outcome. Furthermore, the modified version of the model replicated the trend observed in clinical samples performing the task. We argue that the basic cognitive component underlying learning under uncertainty can be represented as a differential equation that considers the outcomes of previous decisions for guiding the agent to an adaptive strategy.

11.
Bioprocess Biosyst Eng ; 36(12): 1947-56, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23708649

ABSTRACT

Cell culture on biopolymeric scaffolds has provided treatments for tissue engineering. Biopolymeric mixtures based on gelatin (Ge), chitosan (Ch) and hyaluronic acid (Ha) have been used to make scaffolds for wound healing. Thermal and physical properties of scaffolds prepared with Ge, Ch and Ha were characterized. Thermal characterization was made by using differential scanning calorimetry (DSC), and physical characterization by gas pycnometry and scanning electron microscopy. The effects of Ge content and cross-linking on thermophysical properties were evaluated by means of a factorial experiment design (central composite face centered). Gelatin content was the main factor that affects the thermophysical properties (microstructure and thermal transitions) of the scaffold. The effect of Ge content of the scaffolds for tissue engineering was studied by seeding skin cells on the biopolymers. The cell attachment was not significantly modified at different Ge contents; however, the cell growth rate increased linearly with the decrease of the Ge content. This relationship together with the thermophysical characterization may be used to design scaffolds for tissue engineering.


Subject(s)
Biopolymers/chemistry , Chitosan/chemistry , Gelatin/chemistry , Hyaluronic Acid/chemistry , Tissue Engineering , Animals , Calorimetry, Differential Scanning , Cell Adhesion , Cell Division , Cells, Cultured , Microscopy, Electron, Scanning , Rats , Temperature , Tissue Scaffolds
12.
Electron. j. biotechnol ; Electron. j. biotechnol;13(5): 20-21, Sept. 2010. ilus, tab
Article in English | LILACS | ID: lil-591902

ABSTRACT

Gelatin, chitosan and hyaluronic acid are natural components used to prepare polymeric scaffold in tissue engineering. The physical properties of these materials confer an appropriate microenvironment for cells, which can be used as a regeneration system for skin and cartilage. In this work, we prepared and characterized a Gelatin/Chitosan/Hyaluronan lyophilized-polymer. Physical properties of lyophilized-polymer changed slightly with moisture, but when polymer was totally hydrated the elasticity changed significantly. Thermophysical characterisation indicated that temperatures higher than 30ºC could modify irreversibly the polymeric matrix probably due to protein denaturation. Besides, we used the polymer as scaffold to prepare a biosynthetic-skin, reporting biological behaviour and its mechanical properties.


Subject(s)
Hyaluronic Acid/chemistry , Gelatin/chemistry , Chitosan/chemistry , Calorimetry, Differential Scanning , Immunohistochemistry , Microscopy, Electron, Scanning , Biocompatible Materials/chemistry , Polymers , Skin, Artificial
13.
J Transl Med ; 8: 59, 2010 Jun 17.
Article in English | MEDLINE | ID: mdl-20565787

ABSTRACT

BACKGROUND: This manuscript reports the production and preclinical studies to examine the tolerance and efficacy of an autologous cellular gel-matrix integrated implant system (IIS) aimed to treat full-thickness skin lesions. METHODS: The best concentration of fibrinogen and thrombin was experimentally determined by employing 28 formula ratios of thrombin and fibrinogen and checking clot formation and apparent stability. IIS was formed by integrating skin cells by means of the in situ gelification of fibrin into a porous crosslinked scaffold composed of chitosan, gelatin and hyaluronic acid. The in vitro cell proliferation within the IIS was examined by the MTT assay and PCNA expression. An experimental rabbit model consisting of six circular lesions was utilized to test each of the components of the IIS. Then, the IIS was utilized in an animal model to cover a 35% body surface full thickness lesion. RESULTS: The preclinical assays in rabbits demonstrated that the IIS was well tolerated and also that IIS-treated rabbit with lesions of 35% of their body surface, exhibited a better survival rate (p = 0,06). CONCLUSION: IIS should be further studied as a new wound dressing which shows promising properties, being the most remarkable its good biological tolerance and cell growth promotion properties.


Subject(s)
Gels/pharmacology , Implants, Experimental , Wound Healing/drug effects , Animals , Biological Assay , Blood Coagulation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Fibrinogen/metabolism , Immunohistochemistry , Proliferating Cell Nuclear Antigen/metabolism , Rabbits , Skin/drug effects , Skin/pathology , Thrombin/metabolism , Treatment Outcome
14.
J Theor Biol ; 265(1): 18-26, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20417646

ABSTRACT

Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems.


Subject(s)
Ecosystem , Models, Biological , Tillandsia/growth & development , Weather , Chile , Numerical Analysis, Computer-Assisted
15.
Chem Commun (Camb) ; (7): 898-900, 2005 Feb 21.
Article in English | MEDLINE | ID: mdl-15700074

ABSTRACT

Gold electrodes, previously prepared with surface anchored PAMAM dendrimers, were further modified with a Ni-containing tetraazamacrocycle resulting in a novel electrocatalytic material which proved to be particularly efficient for the electrochemical oxidation of methanol in basic aqueous medium.


Subject(s)
Dendrimers/chemistry , Membranes, Artificial , Methanol/chemistry , Nickel/chemistry , Organometallic Compounds/chemistry , Polyamines/chemistry , Catalysis , Electrochemistry , Molecular Structure , Oxidation-Reduction , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL