Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38607157

ABSTRACT

The limited access to fresh water and the increased presence of emergent pollutants (EPs) in wastewater has increased the interest in developing strategies for wastewater remediation, including photocatalysis. Graphitic carbon nitride (g-C3N4) is a 2D non-metal material with outstanding properties, such as a 2.7 eV bandgap and physicochemical stability, making it a promising photocatalyst. This work reports the process of obtaining high-surface-area (SA) g-C3N4 using the thermal-exfoliation process and the posterior effect of Ag-nanoparticle loading over the exfoliated g-C3N4 surface. The photocatalytic activity of samples was evaluated through methylene blue (MB) degradation under visible-light radiation and correlated to its physical properties obtained by XRD, TEM, BET, and UV-Vis analyses. Moreover, 74% MB degradation was achieved by exfoliated g-C3N4 compared to its bulk counterpart (55%) in 180 min. Moreover, better photocatalytic performances (94% MB remotion) were registered at low Ag loading, with 5 wt.% as the optimal value. Such an improvement is attributed to the synergetic effect produced by a higher SA and the role of Ag nanoparticles in preventing charge-recombination processes. Based on the results, this work provides a simple and efficient methodology to obtain Ag/g-C3N4 photocatalysts with enhanced photocatalytic performance that is adequate for water remediation under sunlight conditions.

2.
ACS Omega ; 9(7): 7554-7563, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405448

ABSTRACT

The antimicrobial activity of silver and zinc exchanged cations in Y-zeolite (Ag/CBV-600, Zn/CBV-600) is evaluated against Staphylococcus aureus (gram (+)) and Escherichia coli (gram (-)) bacteria along with their adsorption capacity for viruses: brome mosaic virus (BMV), cowpea chlorotic mottle virus (CCMV), and the bacteriophage MS2. The physicochemical properties of synthesized nanomaterials are characterized by inductively coupled plasma optical emission spectroscopy (ICP-OES), UV-Vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). According to the obtained results, the main species associated with the exchanged ions are Ag+ and Zn2+ cations with the concentration of around 1 atomic %. The incorporation of cations does not modify the Y-zeolite framework. The Ag/CBV-600 and Zn/CBV-600 materials show an inactivation of 90% for both gram (+) and gram (-) bacteria at 16 h at a relatively low concentration of nanomaterial (0.5 mg/mL). Moreover, the samples present good adsorption capacity for BMV, CCMV, and MS2 viruses showing adsorption higher than 40% after 2 h of interaction with the viruses. These prominent results allow the further usage of nanomaterials as an effective remedy to inhibit and reduce the spread of viruses such as SARS-CoV-2 or other gram (+) or gram (-) bacteria.

3.
ACS Sustain Chem Eng ; 11(9): 3896-3906, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36911875

ABSTRACT

In this contribution, a series of Pd-promoted Nb-doped titania samples were essayed in the gas-phase thermo-photo production of syngas from methanol/water mixtures. The Pd loading was tested in the 0.1 to 2.5 wt % range, leading to the presence of metallic nanoparticles under reaction. Reaction rates exceeding 52 mmol H2 g-1 h-1 and quantum efficiencies above 33% were obtained. The optimum sample having a 0.5 wt % of Pd provided an outstanding synergy between light and heat under reaction conditions, facilitating the boost of activity with respect to the single-source processes and achieving high selectivity to syngas. The spectroscopic analysis of the physico-chemical ground of the activity unveiled that the noble metal interaction with the Nb-doped anatase support triggers a cooperative effect, promoting the evolution of formic acid-type methanol-derived carbon-containing species and rendering a significant enhancement of syngas production. The proposed thermo-photo system is thus a firm candidate to contribute to the new green circular economy.

4.
Materials (Basel) ; 16(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36614559

ABSTRACT

Multimetallic systems, instead of monometallic systems, have been used to develop materials with diverse supported species to improve their catalytic, antimicrobial activity, etc., properties. The changes in the types of nanospecies obtained through the thermal reduction of ternary Ag+-Cu2+-Zn2+/mordenite systems in hydrogen, followed by their cooling in an air or hydrogen atmosphere, were studied. Such combinations of trimetallic systems with different metal content, variable ratios (between them), and alternating atmosphere types (during the cooling after reducing the samples in hydrogen at 350 °C) lead to diversity in the obtained copper and silver nanospecies. No reduction of Zn2+ was evidenced. A low silver content leads to the formation of reduced silver clusters, while the formation of nanoparticles of a bigger size takes place in the trimetallic samples with high silver content. The cooling of the reduced trimetallic samples in the air causes the oxidation of the obtained metallic clusters and silver and copper nanoparticles. In the case of copper, such conditions lead to the formation of mainly copper (II) oxide, while the silver nanospecies are converted mainly into clusters and nanoparticles. The zinc cations provoked changes in the mordenite matrix, which was associated with the formation of point oxygen defects in the mordenite structure and the formation of surface zinc oxide sub-nanoparticles in the samples cooled in the air.

5.
Front Chem ; 9: 716745, 2021.
Article in English | MEDLINE | ID: mdl-34434919

ABSTRACT

This article reviews the current state and development of thermal catalytic processes using transition metals (TM) supported on zeolites (TM/Z), as well as the contribution of theoretical studies to understand the details of the catalytic processes. Structural features inherent to zeolites, and their corresponding properties such as ion exchange capacity, stable and very regular microporosity, the ability to create additional mesoporosity, as well as the potential chemical modification of their properties by isomorphic substitution of tetrahedral atoms in the crystal framework, make them unique catalyst carriers. New methods that modify zeolites, including sequential ion exchange, multiple isomorphic substitution, and the creation of hierarchically porous structures both during synthesis and in subsequent stages of post-synthetic processing, continue to be discovered. TM/Z catalysts can be applied to new processes such as CO2 capture/conversion, methane activation/conversion, selective catalytic NOx reduction (SCR-deNOx), catalytic depolymerization, biomass conversion and H2 production/storage.

6.
Molecules ; 25(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066351

ABSTRACT

Mesostructured pillared zeolite materials in the form of lamellar phases with a crystal structure of mordenite (MOR) and ZSM-5 (MFI) were grown using CTAB as an agent that creates mesopores, in a one-pot synthesis; then into the CTAB layers separating the 2D zeolite plates were introduced by diffusion the TEOS molecules which were further hydrolyzed, and finally the material was annealed to remove the organic phase, leaving the 2D zeolite plates separated by pillars of silicon dioxide. To monitor the successive structural changes and the state of the atoms of the zeolite framework and organic compounds at all the steps of the synthesis of pillared MOR and MFI zeolites, the nuclear magnetic resonance method (NMR) with magic angle spinning (MAS) was applied. The 27Al and 29Si MAS NMR spectra confirm the regularity of the zeolite frameworks of the as synthetized materials. Analysis of the 1H and 13C MAS NMR spectra and an experiment with variable contact time evidence a strong interaction between the charged "heads" -[N(CH3)3]+ of CTAB and the zeolite framework at the place of [AlO4]- location. According to 27Al and 29Si MAS NMR the evacuation of organic cations leads to a partial but not critical collapse of the local zeolite structure.


Subject(s)
Aluminum Silicates/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Zeolites/chemistry , Aluminum , Calorimetry, Differential Scanning , Cetrimonium/chemistry , Crystallization , Isotopes , Microscopy, Electron, Scanning , Silicon , Spectrometry, X-Ray Emission , Thermogravimetry , X-Ray Diffraction
7.
Molecules ; 24(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31757044

ABSTRACT

This article presents the results of a comprehensive study of copper-exchanged mordenite samples prepared from its ammonia and protonated forms (Si/Al = 10) using two different ion exchange methods: conventional and microwave (MW)-assisted. The protonated H-MOR-10 sample was obtained by calcination of commercial NH4MOR-10; in this case, a slight degradation of the mordenite framework was observed, but the resulting defects were partially restored after the first ion-exchange procedure of protons for copper ions. The level of copper exchange in the studied materials was found to be limited to 70%. Regardless of the exchange procedure, the replacement of ammonium or proton ions with copper led to a linear increase in the a/b ratio of cell parameters in accordance with an increase in the level of copper exchange, which means that all Cu2+ cations are ion-exchangeable and enter the main mordenite channel. Thermal analysis indicated a correlation between the replacement of various ammonium and hydroxyl groups by copper ions during the exchange treatment and their dehydroxylation energy during thermal decomposition. As a conclusion: MW-assisted treatment proved itself as an efficacious method for the synthesis of copper-exchanged mordenites, which not only significantly reduces preparation time but leads to a systematically higher copper exchange level.


Subject(s)
Aluminum Silicates/chemistry , Ammonia/chemistry , Copper/chemistry , Microwaves , Ion Exchange
8.
Front Chem ; 7: 750, 2019.
Article in English | MEDLINE | ID: mdl-31781539

ABSTRACT

The aim of this work is focused on the study of a series of non-traditional catalytic nanomaterials to transform greenhouse CO2 gas into added-value products. We found encouraging results of CO2 hydrogenation activity over sodium titanates with different morphologies. The yield to methanol increases with the increase in the Na incorporated in the nanostructures confirming the proposed mechanism. Samples were prepared at different times of hydrothermal treatment (HTT) with NaOH solutions, and these materials were labeled as Ti-nR-x with x as the hours on the HTT. HRTEM initially showed sphere-shaped nanoparticles in the TiO2 commercial nanopowder, increasing the HTT resulted in morphological changes in which the structures passed from nanosheets and finally to nanorods after 30 h. The X-ray diffraction and Raman spectroscopy results indicated the formation of sodium titanates such as Na2Ti3O7 with short Ti-O bonds and that Na begins to be incorporated into the distorted TiO6 crystalline structure after 5 h of HTT (until 12 wt%). The crystalline and shape transformation resulted in a significant modification on the textural properties passing from 51 m2.g-1 to 150 m2.g-1 and from a pore volume of 0.12 cm3.g-1 to 1.03 cm3.g-1 for Ti-ref and Ti-nR-30 respectively. We also observed differences in the electronic properties as the bandgap presented a blue shift from 3.16 eV on the TiO2 reference nano-powder to 3.44 eV for the Ti-nR-30 calcined sample. This fact coincides with the presence of a more electron-rich state of the Ti4+ and the formation of negative charge layer induced by the presence of Na+ interlayer cations detected by XPS analysis, at the same this helped us to explain the catalytic activity results.

SELECTION OF CITATIONS
SEARCH DETAIL
...