Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 133(1-2): 186-94, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19523705

ABSTRACT

The microbial behaviour of five enterotoxigenic strains of Staphylococcus aureus was studied in the growth/no growth domain. A polynomial logistic regression equation was fitted using a stepwise method to study the interaction of temperature (8, 10, 13, 16 and 19 degrees C), pH (4.5; 5.0; 5.5; 6.0; 6.5 7.0 and 7.5) and water activity (A(w)) (19 levels ranging from 0.867 to 0.999) on the probability of growth. Out of the 284 conditions tested, 146 were chosen for model data and 138 intermediate conditions for validation data. A growth/no growth transition was obtained by increasing the number of replicates per condition (n=30) in comparison to other published studies. The logistic regression model showed a good performance since 96.6% (141 out of 146 conditions) of the conditions for model data and 92.0% (127 out of 138 conditions) for validation data were correctly classified. The predictions indicated an abrupt growth/no growth interfaces occurred at low levels of temperature, pH and A(w). At 8 degrees C, S. aureus grew only at optimum levels of pH and A(w) while at temperatures above 13 degrees C, growth of S. aureus was observed at pH=4.5 and A(w)=0.96 (13 degrees C), 0.941 (16 degrees C) and 0.915 (19 degrees C). The optimal pH at which growth of S. aureus was detected earlier was 6.5. However, a slight decrease of the probability of growth was noticed in the pH interval of 7.0-7.5 at more stringent conditions. The ability of S. aureus to grow at low A(w) was shown since growth was detected at A(w)=0.867 (T=19 degrees C; pH=7.0). Finally, a comparison of model predictions with literature data on growth/no growth responses of S. aureus in culture media and cooked meat was made. Model predictions agreed with published data in 94% of growth cases and in 62% of no growth cases. The latter discordance is highly associated to other environmental factors (such as other preservatives, strains etc.) included in published models that did not match the ones included in our study. This study can help manufacturers in making decision on the most appropriate formulations for food products in order to prevent S. aureus growth and enterotoxin production along their shelf-life.


Subject(s)
Hydrogen-Ion Concentration , Models, Biological , Staphylococcus aureus/growth & development , Temperature , Water/physiology , Logistic Models
2.
J Food Sci ; 73(7): C526-32, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18803697

ABSTRACT

Lignin is the cell wall component most frequently associated with hardening. Its characterization and quantification are very important to understand the biochemical modifications related to the changes in texture of vegetables such as asparagus (Asparagus officinalis), in which this organoleptic attribute is a very important quality factor. In this study, asparagus lignin from the basal sections of fresh and stored spears was analyzed using 2 methods, the traditional (Klason lignin) and the recently developed derivatization, followed by reductive cleavage (DFRC) method. The latter is a simple and reproducible technique for lignin characterization based on a degradation procedure that produces analyzable monomers and dimers by cleaving alpha- and beta-aryl ethers in lignins. The primary monomers derived from DFRC degradation of lignins are essentially p-coumaryl peracetate, coniferyl peracetate, and sinapyl peracetate. To evaluate the efficiency of the DFRC method, our investigations have been carried on distinct sample types, including wood (data not shown), straw, and asparagus samples. The results have confirmed that lignin composition is affected by plant nature. It has been found that whereas wood samples mostly contain coniferyl units, plant foods, such as straw and asparagus, contain both coniferyl and guaiacyl units.


Subject(s)
Asparagus Plant/chemistry , Lignin/analysis , Cell Wall/chemistry , Chromatography, High Pressure Liquid , Peracetic Acid/chemistry , Wood/chemistry
3.
J Agric Food Chem ; 56(16): 6977-84, 2008 Aug 27.
Article in English | MEDLINE | ID: mdl-18656928

ABSTRACT

The determination of flavonoid profiles from different genotypes of triguero asparagus and their comparison to those from green asparagus commercial hybrids was the main goal of this study. The samples consisted of 32 commercial hybrids and 65 genotypes from the Huetor-Tajar population variety (triguero). The analysis of individual flavonoids by HPLC-DAD-MS has allowed the determination of eight naturally occurring flavonol derivatives in several genotypes of triguero asparagus. Those compounds included mono-, di-, and triglycosides of three flavonols, that is, quercetin, isorhamnetin, and kaempferol. The detailed analysis of the flavonoid profiles revealed significant differences among the distinct genotypes. These have been classified in three distinct groups as the result of a k-means clustering analysis, two of them containing both commercial hybrids and triguero asparagus and another cluster constituted by 21 genotypes of triguero asparagus, which contain several key flavonol derivatives able to differentiate them. Hence, the triglycosides tentatively identified as quercetin-3-rhamnosyl-rutinoside, isorhamnetin-3-rhamnosyl-rutinoside, and isorhamnetin-3-O-glucoside have been detected only in the genotypes grouped in the above-mentioned cluster. On the other hand, the compound tentatively identified as isorhamnetin-3-glucosyl-rutinoside was present in most genotypes of triguero asparagus, whereas it has not been detected in any of the commercial hybrids.


Subject(s)
Asparagus Plant/chemistry , Asparagus Plant/genetics , Flavonoids/analysis , Chromatography, High Pressure Liquid , Genotype , Hybridization, Genetic , Spain , Species Specificity , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...