Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 113(9): 1716-1728, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37486151

ABSTRACT

A previously uncharacterized torradovirus species infecting potatoes was detected by high-throughput sequencing from field samples from Peru and in customs intercepts in potato tubers that originated from South America in the United States of America and the Netherlands. This new potato torradovirus showed high nucleotide sequence identity to an unidentified isometric virus (SB26/29), which was associated with a disease named potato rugose stunting in southern Peru characterized over two decades ago. Thus, this virus is tentatively named potato rugose stunting virus (PotRSV). The genome of PotRSV isolates sequenced in this study were composed of two polyadenylated RNA segments. RNA1 ranges from 7,086 to 7,089 nt and RNA2 from 5,228 to 5,230 nt. RNA1 encodes a polyprotein containing the replication block (helicase-protease-polymerase), whereas RNA2 encodes a polyprotein cleaved into a movement protein and the three capsid proteins (CPs). Pairwise comparison among PotRSV isolates revealed amino acid identity values greater than 86% in the protease-polymerase (Pro-Pol) region and greater than 82% for the combined CPs. The closest torradovirus species, squash chlorotic leaf spot virus, shares amino acid identities of ∼58 and ∼41% in the Pro-Pol and the combined CPs, respectively. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , RNA, Viral/genetics , Peru , Genome, Viral , Plant Diseases , Peptide Hydrolases/genetics , Polyproteins/genetics , Amino Acids/genetics , Growth Disorders/genetics
2.
Front Microbiol ; 12: 684599, 2021.
Article in English | MEDLINE | ID: mdl-34194416

ABSTRACT

Maize stripe virus is a pathogen of corn and sorghum in subtropical and tropical regions worldwide. We used high-throughput sequencing to obtain the complete nucleotide sequence for the reference genome of maize stripe virus and to sequence the genomes of ten additional isolates collected from the United States or Papua New Guinea. Genetically, maize stripe virus is most closely related to rice stripe virus. We completed and characterized the RNA1 sequence for maize stripe virus, which revealed a large open reading frame encoding a putative protein with ovarian tumor-like cysteine protease, endonuclease, and RNA-dependent RNA polymerase domains. Phylogenetic and amino acid identity analyses among geographically diverse isolates revealed evidence for reassortment in RNA3 that was correlated with the absence of RNA5. This study yielded a complete and updated genetic description of the tenuivirus maize stripe virus and provided insight into potential mechanisms underpinning its diversity.

3.
PLoS One ; 15(9): e0239199, 2020.
Article in English | MEDLINE | ID: mdl-32941541

ABSTRACT

Miscanthus sinensis is a grass used for sugarcane breeding and bioenergy production. Using high throughput sequencing technologies, we identified a new viral genome in infected M. sinensis leaf tissue displaying yellow fleck symptoms. This virus is most related to members of the genus Polerovirus in the family Luteoviridae. The canonical ORFs were computationally identified, the P3 coat protein was expressed, and virus-like particles were purified and found to conform to icosahedral shapes, characteristic of the family Luteoviridae. We propose the name Miscanthus yellow fleck virus for this new virus.


Subject(s)
Luteoviridae/genetics , Phylogeny , Poaceae/virology , Luteoviridae/classification , Luteoviridae/pathogenicity , Luteoviridae/ultrastructure
4.
Plant Dis ; 95(12): 1516-1519, 2011 Dec.
Article in English | MEDLINE | ID: mdl-30732011

ABSTRACT

In 2006, a previously unknown wheat (Triticum aestivum) virus was discovered in Western Kansas and given the name Triticum mosaic virus (TriMV). TriMV has since been found in wheat samples isolated all across the Great Plains. Even though it can infect singularly, TriMV is mostly found with Wheat streak mosaic virus (WSMV) as a co-infection. The potential for TriMV to cause economic loss is significant, but very little is known about the virus. The objective of this study was to survey the TriMV population for genetic variation by nucleotide sequencing of isolates across a geographical region. A secondary objective was to characterize the WSMV isolates that are being co-transmitted with TriMV. Fourteen different TriMV isolations were taken from locations in Texas, Oklahoma, and Kansas, and the coat protein cDNA was sequenced. Thirteen nucleotide differences were found in the TriMV isolates, of which three induce amino acid changes. WSMV isolates had 65 nucleotide changes when compared to WSMV Sydney81. Our results indicate the TriMV virus population has minimal amounts of sequence variation and no singular WSMV genotype is specifically associated with TriMV co-infection. Based on the isolates analyzed, it appears that the field population of TriMV is very homogeneous.

SELECTION OF CITATIONS
SEARCH DETAIL
...