Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 190(8): 285, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418024

ABSTRACT

Plastics with nanosize (nanoplastics, NPLs) must be characterized, since they can be toxic or act as carriers of organic and inorganic pollutants, but there is a lack of reference materials and validated methods in the nanosize range. Therefore, this study has focused on the development and validation of a separation and size characterization methodology of polystyrene latex nanospheres, by using an asymmetric-flow field flow fraction system coupled to multi-angle light scattering and ultraviolet-visible detectors (AF4-MALS-UV). Hence, this work presents a fully validated methodology in the particle size range 30 to 490 nm, with bias between 95 and 109%, precision between 1 and 18%, LOD and LOQ below 0.2 and 0.3 µg respectively, except for 30-nm standard, for both detectors, and showing stable results for 100 analyses.


Subject(s)
Microplastics , Polystyrenes , Plastics , Water
2.
Biomolecules ; 13(2)2023 01 23.
Article in English | MEDLINE | ID: mdl-36830590

ABSTRACT

The human health risks posed by micro/nanoplastics (MNPLs), as emerging pollutants of environmental/health concern, need to be urgently addressed as part of a needed hazard assessment. The routes of MNPL exposure in humans could mainly come from oral, inhalation, or dermal means. Among them, inhalation exposure to MNPLs is the least studied area, even though their widespread presence in the air is dramatically increasing. In this context, this study focused on the potential hazard of polystyrene nanoplastics (PSNPLs with sizes 50 and 500 nm) in human primary nasal epithelial cells (HNEpCs), with the first line of cells acting as a physical and immune barrier in the respiratory system. Primarily, cellular internalization was evaluated by utilizing laboratory-labeled fluorescence PSNPLs with iDye, a commercial, pink-colored dye, using confocal microscopy, and found PSNPLs to be significantly internalized by HNEpCs. After, various cellular effects, such as the induction of intracellular reactive oxygen species (iROS), the loss of mitochondrial membrane potential (MMP), and the modulation of the autophagy pathway in the form of the accumulation of autophagosomes (LC3-II) and p62 markers (a ubiquitin involved in the clearance of cell debris), were evaluated after cell exposure. The data demonstrated significant increases in iROS, a decrease in MMP, as well as a greater accumulation of LC3-II and p62 in the presence of PSNPLs. Notably, the autophagic effects did indicate the implications of PSNPLs in defective or insufficient autophagy. This is the first study showing the autophagy pathway as a possible target for PSNPL-induced adverse effects in HNEpCs. When taken together, this study proved the cellular effects of PSNPLs in HNEpCs and adds value to the existing studies as a part of the respiratory risk assessment of MNPLs.


Subject(s)
Microplastics , Polystyrenes , Humans , Microplastics/pharmacology , Polystyrenes/pharmacology , Autophagy , Epithelial Cells/metabolism , Reactive Oxygen Species/metabolism
3.
J Hazard Mater ; 439: 129593, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35843083

ABSTRACT

Micro and nanoplastics (MNPLs) are emergent environmental pollutants requiring urgent information on their potential risks to human health. One of the problems associated with the evaluation of their undesirable effects is the lack of representative samples, matching those resulting from the environmental degradation of plastic wastes. To such end, we propose an easy method to obtain polyethylene terephthalate nanoplastics from water plastic bottles (PET-NPLs) but, in principle, applicable to any other plastic goods sources. An extensive characterization indicates that the proposed process produces uniform samples of PET-NPLs of around 100 nm, as determined by using AF4 and multi-angle and dynamic light scattering methodologies. An important point to be highlighted is that to avoid the metal contamination resulting from methods using metal blades/burrs for milling, trituration, or sanding, we propose to use diamond burrs to produce metal-free samples. To visualize the toxicological profile of the produced PET-NPLs we have evaluated their ability to be internalized by cells, their cytotoxicity, their ability to induce oxidative stress, and induce DNA damage. In this preliminary approach, we have detected their cellular uptake, but without the induction of significant biological effects. Thus, no relevant increases in toxicity, reactive oxygen species (ROS) induction, or DNA damage -as detected with the comet assay- have been observed. The use of representative samples, as produced in this study, will generate relevant data in the discussion about the potential health risks associated with MNPLs exposures.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Humans , Microplastics/toxicity , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
Analyst ; 147(2): 349-357, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34935777

ABSTRACT

Nephrolithiasis is a multifactor disease that produces nephrolites in the kidneys. Calcium oxalate hydrate (dihydrated, COD, or monohydrated, COM) stones are the most common ones with more than sixty percent incidence worldwide. They are related to different pathologies, COD with hypercalciuria and COM with hyperoxaluria. COD is an unstable species and transforms into COM (herein named TRA to distinguish the origin of the monohydrated species). TRA and COM are chemically and crystallographically identical leading to misdiagnosis and recurrence increase. In the current study, the composition and crystalline structures of several calcium oxalate stones, classified by morpho-constitutional analysis, were examined by IR and synchrotron through-the-substrate micro-X-ray diffraction (tts-µXRD). Both IR and linear diffractogram studies were able to distinguish between the monohydrated and dihydrated phases but not between COM and TRA, as expected. The analysis of 2D diffraction patterns revealed that TRA showed a lower degree of crystallinity and less texture with respect to COM which can be used as a signature to distinguish between the two. This study confirms that despite the subtle differences between COM and TRA, the origin of the monohydrate oxalates can be unraveled using tts-µXRD. This valuable information should be taken into account in order to improve patients' diagnosis and reduce recurrence by considering and treating the origin of the formed stones.


Subject(s)
Calcium Oxalate , Kidney Calculi , Humans , Oxalates , Synchrotrons , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...