Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
BMJ Open ; 12(12): e067159, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36585141

ABSTRACT

INTRODUCTION: The growing worldwide prevalence of Alzheimer's disease (AD) and the lack of effective treatments pose a dire medical challenge. Sleep disruption is also prevalent in the ageing population and is increasingly recognised as a risk factor and an early sign of AD. The ALFASleep project aims to characterise sleep with subjective and objective measurements in cognitively unimpaired middle/late middle-aged adults at increased risk of AD who are phenotyped with fluid and neuroimaging AD biomarkers. This will contribute to a better understanding of the pathophysiological mechanisms linking sleep with AD, thereby paving the way for the development of non-invasive biomarkers and preventive strategies targeting sleep. METHODS AND ANALYSIS: We will invite 200 participants enrolled in the ALFA+ (for ALzheimer and FAmilies) prospective observational study to join the ALFASleep study. ALFA+ participants are cognitively unimpaired middle-aged/late middle-aged adults who are followed up every 3 years with a comprehensive set of evaluations including neuropsychological tests, blood and cerebrospinal fluid (CSF) sampling, and MRI and positron emission tomography acquisition. ALFASleep participants will be additionally characterised with actigraphy and CSF-orexin-A measurements, and a subset (n=90) will undergo overnight polysomnography. We will test associations of sleep measurements and CSF-orexin-A with fluid biomarkers of AD and glial activation, neuroimaging outcomes and cognitive performance. In case we found any associations, we will test whether changes in AD and/or glial activation markers mediate the association between sleep and neuroimaging or cognitive outcomes and whether sleep mediates associations between CSF-orexin-A and AD biomarkers. ETHICS AND DISSEMINATION: The ALFASleep study protocol has been approved by the independent Ethics Committee Parc de Salut Mar, Barcelona (2018/8207/I). All participants have signed a written informed consent before their inclusion (approved by the same ethics committee). Study findings will be presented at national and international conferences and submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04932473.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Middle Aged , Alzheimer Disease/diagnosis , Biomarkers , Cognition/physiology , Cognitive Dysfunction/diagnosis , Observational Studies as Topic , Orexins/cerebrospinal fluid , Sleep Quality
2.
Alzheimers Res Ther ; 14(1): 126, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068641

ABSTRACT

BACKGROUND: The COVID-19 pandemic may worsen the mental health of people reporting subjective cognitive decline (SCD) and therefore their clinical prognosis. We aimed to investigate the association between the intensity of SCD and anxious/depressive symptoms during confinement and the underlying mechanisms. METHODS: Two hundred fifty cognitively unimpaired participants completed the Hospital Anxiety and Depression Scale (HADS) and SCD-Questionnaire (SCD-Q) and underwent amyloid-ß positron emission tomography imaging with [18F] flutemetamol (N = 205) on average 2.4 (± 0.8) years before the COVID-19 confinement. During the confinement, participants completed the HADS, Perceived Stress Scale (PSS), Brief Resilience Scale (BRS), and an ad hoc questionnaire on worries (access to primary products, self-protection materials, economic situation) and lifestyle changes (sleep duration, sleep quality, eating habits). We investigated stress-related measurements, worries, and lifestyle changes in relation to SCD. We then conducted an analysis of covariance to investigate the association of SCD-Q with HADS scores during the confinement while controlling for pre-confinement anxiety/depression scores and demographics. Furthermore, we introduced amyloid-ß positivity, PSS, and BRS in the models and performed mediation analyses to explore the mechanisms explaining the association between SCD and anxiety/depression. RESULTS: In the whole sample, the average SCD-Q score was 4.1 (± 4.4); 70 (28%) participants were classified as SCD, and 26 (12.7%) were amyloid-ß-positive. During the confinement, participants reporting SCD showed higher PSS (p = 0.035) but not BRS scores (p = 0.65) than those that did not report SCD. No differences in worries or lifestyle changes were observed. Higher SCD-Q scores showed an association with greater anxiety/depression scores irrespective of pre-confinement anxiety/depression levels (p = 0.002). This association was not significant after introducing amyloid-ß positivity and stress-related variables in the model (p = 0.069). Amyloid-ß positivity and PSS were associated with greater HADS irrespective of pre-confinement anxiety/depression scores (p = 0.023; p < 0.001). The association of SCD-Q with HADS was mediated by PSS (p = 0.01). CONCLUSIONS: Higher intensity of SCD, amyloid-ß positivity, and stress perception showed independent associations with anxious/depressive symptoms during the COVID-19 confinement irrespective of pre-confinement anxiety/depression levels. The association of SCD intensity with anxiety/depression was mediated by stress perception, suggesting stress regulation as a potential intervention to reduce affective symptomatology in the SCD population in the face of stressors.


Subject(s)
COVID-19 , Cognitive Dysfunction , Amyloid beta-Peptides , Anxiety/diagnosis , Anxiety/epidemiology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/epidemiology , Depression/diagnosis , Depression/epidemiology , Humans , Pandemics , Perception
3.
Neurology ; 99(14): e1486-e1498, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35918160

ABSTRACT

BACKGROUND AND OBJECTIVES: Increased anxious-depressive symptomatology is observed in the preclinical stage of Alzheimer disease (AD), which may accelerate disease progression. We investigated whether ß-amyloid, cortical thickness in medial temporal lobe structures, neuroinflammation, and sociodemographic factors were associated with greater anxious-depressive symptoms during the COVID-19 confinement. METHODS: This retrospective observational study included cognitively unimpaired older adults from the Alzheimer's and Families cohort, the majority with a family history of sporadic AD. Participants performed the Hospital Anxiety and Depression Scale (HADS) during the COVID-19 confinement. A subset had available retrospective (on average: 2.4 years before) HADS assessment, amyloid [18F] flutemetamol PET and structural MRI scans, and CSF markers of neuroinflammation (interleukin-6 [IL-6], triggering receptor expressed on myeloid cells 2, and glial fibrillary acidic protein levels). We performed multivariable linear regression models to investigate the associations of prepandemic AD-related biomarkers and sociodemographic factors with HADS scores during the confinement. We further performed an analysis of covariance to adjust by participants' prepandemic anxiety-depression levels. Finally, we explored the role of stress and lifestyle changes (sleep patterns, eating, drinking, smoking habits, and medication use) on the tested associations and performed sex-stratified analyses. RESULTS: We included 921 (254 with AD biomarkers) participants. ß-amyloid positivity (B = 3.73; 95% CI = 1.1 to 6.36; p = 0.006), caregiving (B = 1.37; 95% CI 0.24-2.5; p = 0.018), sex (women: B = 1.95; 95% CI 1.1-2.79; p < 0.001), younger age (B = -0.12; 95% CI -0.18 to -0.052; p < 0.001), and lower education (B = -0.16; 95% CI -0.28 to -0.042; p = 0.008) were associated with greater anxious-depressive symptoms during the confinement. Considering prepandemic anxiety-depression levels, we further observed an association between lower levels of CSF IL-6 (B = -5.11; 95% CI -10.1 to -0.13; p = 0.044) and greater HADS scores. The results were independent of stress-related variables and lifestyle changes. Stratified analysis revealed that the associations were mainly driven by women. DISCUSSION: Our results link AD-related pathophysiology and neuroinflammation with greater anxious-depressive symptomatology during the COVID-19-related confinement, notably in women. AD pathophysiology may increase neuropsychiatric symptomatology in response to stressors. This association may imply a worse clinical prognosis in people at risk for AD after the pandemic and thus deserves to be considered by clinicians. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier NCT02485730.


Subject(s)
Alzheimer Disease , COVID-19 , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Anxiety , Biomarkers , Depression , Female , Glial Fibrillary Acidic Protein , Humans , Interleukin-6 , Male , Positron-Emission Tomography , Retrospective Studies , tau Proteins/metabolism
4.
J Cell Mol Med ; 25(11): 5124-5137, 2021 06.
Article in English | MEDLINE | ID: mdl-33951289

ABSTRACT

Limbal stem cells (LSC) maintain the transparency of the corneal epithelium. Chemical burns lead the loss of LSC inducing an up-regulation of pro-inflammatory and pro-angiogenic factors, triggering corneal neovascularization and blindness. Adipose tissue-derived mesenchymal stem cells (AT-MSC) have shown promise in animal models to treat LSC deficiency (LSCD), but there are not studies showing their efficacy when primed with different media before transplantation. We cultured AT-MSC with standard medium and media used to culture LSC for clinical application. We demonstrated that different media changed the AT-MSC paracrine secretion showing different paracrine effector functions in an in vivo model of chemical burn and in response to a novel in vitro model of corneal inflammation by alkali induction. Treatment of LSCD with AT-MSC changed the angiogenic and inflammatory cytokine profile of mice corneas. AT-MSC cultured with the medium that improved their cytokine secretion, enhanced the anti-angiogenic and anti-inflammatory profile of the treated corneas. Those corneas also presented better outcome in terms of corneal transparency, neovascularization and histologic reconstruction. Priming human AT-MSC with LSC specific medium can potentiate their ability to improve corneal wound healing, decrease neovascularization and inflammation modulating paracrine effector functions in an in vivo optimized rat model of LSCD.


Subject(s)
Cornea/cytology , Corneal Diseases/prevention & control , Corneal Neovascularization/prevention & control , Inflammation/prevention & control , Mesenchymal Stem Cells/cytology , Regeneration , Wound Healing , Animals , Cell Differentiation , Cells, Cultured , Cornea/metabolism , Corneal Diseases/pathology , Corneal Neovascularization/pathology , Humans , Inflammation/pathology , Mesenchymal Stem Cells/metabolism , Mice , Rats
5.
PLoS One ; 14(11): e0225480, 2019.
Article in English | MEDLINE | ID: mdl-31751429

ABSTRACT

OBJECTIVE: We aimed to investigate the functionality of human decellularized stromal laminas seeded with cultured human corneal endothelial cells as a tissue engineered endothelial graft (TEEK) construct to perform endothelial keratoplasty in an animal model of corneal endothelial damage. METHODS: Engineered corneal endothelial grafts were constructed by seeding cultured human corneal endothelial cell (hCEC) suspensions onto decellularized human corneal stromal laminas with various coatings. The functionality and survival of these grafts with cultured hCECs was examined in a rabbit model of corneal endothelial damage after central descemetorhexis. Rabbits received laminas with and without hCECs (TEEK and control group, respectively). RESULTS: hCEC seeding over fibronectin-coated laminas provided an optimal and consistent endothelial cell count density and polygonal shape on the decellularized laminas, showing active pump fuction. Surgery was performed uneventfully as standard Descemet stripping automated endothelial keratoplasty (DSAEK). Corneal transparency gradually recovered in the TEEK group, whereas haze and edema persisted for up to 4 weeks in the controls. Histologic examination showed endothelial cells of human origin covering the posterior surface of the graft in the TEEK group. CONCLUSIONS: Grafting of decellularized stroma carriers re-surfaced with human corneal endothelial cells ex vivo can be a readily translatable method to improve visual quality in corneal endothelial diseases.


Subject(s)
Corneal Injuries/therapy , Corneal Stroma/cytology , Corneal Transplantation/methods , Descemet Stripping Endothelial Keratoplasty/methods , Endothelium, Corneal/cytology , Tissue Engineering/methods , Adolescent , Adult , Animals , Case-Control Studies , Cells, Cultured , Corneal Stroma/transplantation , Disease Models, Animal , Endothelial Cells/cytology , Endothelium, Corneal/transplantation , Female , Graft Survival , Humans , Male , Rabbits , Treatment Outcome , Young Adult
6.
Biomed Pharmacother ; 91: 776-787, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28501004

ABSTRACT

A serious complication of chronic hepatic insufficiency is acute-on-chronic liver failure, a recognized syndrome characterized by acute decompensation of cirrhosis and organ/system failure. We investigated the use of adipose-derived mesenchymal stem cells (AD-MSCs) in an experimental model of acute-on-chronic liver failure, developed by microsurgical extrahepatic cholestasis in rats. Rats undergoing microsurgical extrahepatic cholestasis were treated by intraparenchymal liver injection of human or rat AD-MSCs, undifferentiated or previously differentiated in vitro toward the hepatocyte lineage. The groups treated with rat AD-MSCs showed less ascites, lower hepato- and splenomegaly, less testicular atrophy, and an improvement in serum biochemical hepatic parameters. There was also an improvement in histological liver changes, in which the area of fibrosis and bile duct proliferation were significantly decreased in the group treated with predifferentiated rat AD-MSCs. In conclusion, an isograft of hepatocyte-predifferentiated AD-MSCs injected intraparenchymally 2 weeks after microsurgery in extrahepatic cholestatic rats prevents secondary complications of acute-on-chronic hepatic failure. These data support the potential use of autologous AD-MSCs in the treatment of human cholestasis, and specifically of newborn biliary atresia, which could be beneficial for patients awaiting transplant.


Subject(s)
Acute-On-Chronic Liver Failure/pathology , Acute-On-Chronic Liver Failure/therapy , Disease Progression , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Acute-On-Chronic Liver Failure/blood , Animals , Body Weight , Cell Differentiation , Humans , Kaplan-Meier Estimate , Liver/pathology , Male , Organ Size , Rats, Wistar , Survival Analysis
7.
PLoS One ; 10(3): e0117945, 2015.
Article in English | MEDLINE | ID: mdl-25730319

ABSTRACT

The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC) into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical practice.


Subject(s)
Adipose Tissue/cytology , Graft Survival/physiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Animals , Cell Differentiation , Coculture Techniques , Cornea/pathology , Corneal Diseases/pathology , Corneal Diseases/therapy , Corneal Transplantation , Cytokines/metabolism , Female , Humans , Immunohistochemistry , Male , Mesenchymal Stem Cells/metabolism , Rabbits , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation, Heterologous , Transplantation, Homologous
8.
Med Hypotheses ; 78(6): 721-31, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22405850

ABSTRACT

Inflammation integrates diverse mechanisms that are associated not only with pathological conditions, such as cardiovascular diseases, type 2 diabetes, obesity, neurodegenerative diseases and cancer, but also with physiological processes like reproduction i.e. oogenesis and embryogenesis as well as aging. In the current review we firstly propose that the inflammatory response could recapitulate the phylogenia. In this way, highly conserved inflammatory mechanisms that play a main role in the evolutive development of different animal species, both invertebrates as well as vertebrates, are identified. Therefore, we also hypothesize that inflammation could represent a key tool used by nature to modulate organisms according to the environmental conditions in which these develop. Thus, inflammation could be the pathway by which the environmental factors could be related to the evolutionary development. If so, the diverse human chronic inflammatory diseases that nowadays the Western society suffer would represent the way for adapting to the abrupt changes in their lifestyle. Nonetheless, the distribution of the different pathological conditions varies in terms of intensity and magnitude among Western country populations depending on their genetic polymorphism. In this case, it should be considered that this set of diseases, distributed between all the individuals that constitute the Westernized society, would represent a true Social Inflammatory Syndrome whose final result is its remodeling. In this context, the use of inflammation by the Western society could represent the camouflaged expression of efficient mechanisms of evolution and development. In addition, if the different types of the inflammatory response involved in these diverse chronic pathological conditions could trace the biochemical origins of life, perhaps inflammation could represent an archaeological tool of unsuspected usefulness for understanding our own origin.


Subject(s)
Adaptation, Biological/physiology , Biological Evolution , Environment , Growth and Development/physiology , Inflammation/physiopathology , Models, Biological , Phylogeny , Wound Healing/physiology , Animals , Humans , Western World
9.
Stem Cell Rev Rep ; 6(4): 633-49, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20669057

ABSTRACT

Pluripotency is defined as the potential of a cell to differentiate into cells of the three germ layers: endoderm, mesoderm and ectoderm. In vivo, the presence of pluripotent stem cells is transient during the very early embryo. However, immortal cell lines with the same properties can be obtained in vitro and grown indefinitely in laboratories under specific conditions. These cells can be induced to differentiate into all the cell types of the organism through different assays, thereby proving their functional pluripotency. This review focuses on the pluripotent stem cells of mammals, giving special attention to the comparison between mouse and human. In particular, embryonic stem cells, epiblast-derived stem cells, primordial germ cells, embryonic germ cells, very small embryonic-like cells and induced pluripotent stem cells will be compared in terms of the following: in vivo specification and location; surface and intracellular markers; in vitro dependence on growth factors; signal transduction pathways; epigenetic characteristics; and pluripotency genes and functional assays.


Subject(s)
Pluripotent Stem Cells/cytology , Animals , Cell Differentiation/physiology , Embryonic Stem Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Models, Biological
10.
Curr Stem Cell Res Ther ; 5(2): 195-204, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19941445

ABSTRACT

In addition to being a protective shield, the cornea represents two thirds of the eye's refractive power. Corneal pathology can affect one or all of the corneal layers, producing corneal opacity. Although full corneal thickness keratoplasty has been the standard procedure, the ideal strategy would be to replace only the damaged layer. Current difficulties in corneal transplantation, mainly immune rejection and shortage of organ supply, place more emphasis on the development of artificial corneas. Bioengineered corneas range from prosthetic devices that solely address the replacement of the corneal function, to tissue-engineered hydrogels that allow regeneration of the tissue. Recently, major advances in the biology of corneal stem cells have been achieved. However, the therapeutic use of these stem cell types has the disadvantage of needing an intact stem cell compartment, which is usually damaged. In addition, long ex vivo culture is needed to generate enough cell numbers for transplantation. In the near future, combination of advanced biomaterials with cells from abundant outer sources will allow advances in the field. For the former, magnetically aligned collagen is one of the most promising ones. For the latter, different cell types will be optimal: 1) for epithelial replacement: oral mucosal epithelium, ear epidermis, or bone marrow- mesenchymal stem cells, 2) for stromal regeneration: adipose-derived stem cells and 3) for endothelial replacement, the possibility of in vitro directed differentiation of adipose-derived stem cells towards endothelial cells provides an exciting new approach.


Subject(s)
Adipose Tissue/pathology , Cornea/pathology , Corneal Diseases/therapy , Mesenchymal Stem Cells/metabolism , Stem Cell Niche/pathology , Animals , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Collagen/therapeutic use , Corneal Diseases/pathology , Corneal Injuries , Guided Tissue Regeneration , Humans , Hydrogels/therapeutic use , Mesenchymal Stem Cells/pathology , Plastic Surgery Procedures , Stem Cell Transplantation , Tissue Culture Techniques , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...