Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
FASEB J ; 37(8): e23079, 2023 08.
Article in English | MEDLINE | ID: mdl-37410022

ABSTRACT

Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.


Subject(s)
Adipocytes, Beige , Mice , Rats , Animals , Transcriptional Activation , Adipocytes, Beige/metabolism , Genistein/pharmacology , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Adipose Tissue, White/metabolism , Thermogenesis/genetics , Response Elements , Adipose Tissue, Brown/metabolism
2.
Metabolism ; 103: 154048, 2020 02.
Article in English | MEDLINE | ID: mdl-31843339

ABSTRACT

OBJECTIVE: Angiotensin-(1-7) [Ang-(1-7)], a component of the renin angiotensin system, is a vasodilator that exerts its effects primarily through the Mas receptor. The discovery of the Mas receptor in white adipose tissue (WAT) suggests an additional role for this peptide. The aim of the present study was to assess whether Ang-(1-7) can induce the expression of thermogenic genes in white adipose tissue and increase mitochondrial respiration in adipocytes. MATERIALS/METHODS: Stromal Vascular fraction (SVF)-derived from mice adipose tissue was stimulated for one week with Ang-(1-7), then expression of beige markers and mitochondrial respiration were assessed. Mas+/+ and Mas-/- mice fed a control diet or a high fat-sucrose diet (HFSD) were exposed to a short or long term infusion of Ang-(1-7) and body weight, body fat, energy expenditure, cold resistance and expression of beige markers were assessed. Also, transgenic rats overexpressing Ang-(1-7) were fed with a control diet or a high fat-sucrose diet and the same parameters were assessed. Ang-(1-7) circulating levels from human subjects with different body mass index (BMI) or age were measured. RESULTS: Incubation of adipocytes derived from SVF with Ang-(1-7) increased the expression of beige markers. Infusion of Ang-(1-7) into lean and obese Mas+/+mice also induced the expression of Ucp1 and some beige markers, an effect not observed in Mas-/- mice. Mas-/- mice had increased body weight gain and decreased cold resistance, whereas rats overexpressing Ang-(1-7) showed the opposite effects. Overexpressing rats exposed to cold developed new thermogenic WAT in the anterior interscapular area. Finally, in human subjects the higher the BMI, low circulating concentration of Ang-(1-7) levels were detected. Similarly, the circulating levels of Ang-(1-7) peptide were reduced with age. CONCLUSION: These data indicate that Ang-(1-7) stimulates beige markers and thermogenesis via the Mas receptor, and this evidence suggests a potential therapeutic use to induce thermogenesis of WAT, particularly in obese subjects that have reduced circulating concentration of Ang-(1-7).


Subject(s)
Adipose Tissue, Beige/drug effects , Angiotensin I/pharmacology , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/physiology , Receptors, G-Protein-Coupled/physiology , Thermogenesis/drug effects , Adipose Tissue, Beige/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adult , Animals , Cell Respiration/drug effects , Cell Respiration/genetics , Cells, Cultured , Energy Metabolism/genetics , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Rats , Rats, Transgenic , Receptors, G-Protein-Coupled/genetics , Thermogenesis/genetics , Young Adult
3.
Arch Med Res ; 48(5): 401-413, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29102386

ABSTRACT

Obesity is characterized by an excess of white adipose tissue (WAT). Recent evidence has demonstrated that WAT can change its phenotype to a brown-like adipose tissue known as beige/brite adipose tissue. This transition is characterized by an increase in thermogenic capacity mediated by uncoupling protein 1 (UCP1). This browning process is a potential new target for treating obesity. The aim of this review is to integrate the different mechanisms by which beige/brite adipocytes are formed and to describe the physiological, pharmacological and nutritional inducers that can promote browning. An additional aim is to show evidence of how some of these inducers can be used as potential therapeutic agents against obesity and its comorbidities. This review shows the importance of brown and beige/brite adipose tissue and the mechanisms of their formation. Particularly, the two theories of beige/brite adipocyte origin are discussed: de novo differentiation and transdifferentiation. The gene markers that identify these types of adipocytes and the involvement of microRNAs in the epigenetic regulation of the browning process is also discussed. Additionally, we describe the transcriptional control of UCP1 expression by some of the inducers of browning. Furthermore, we describe in detail how some bioactive dietary compounds can induce browning and their subsequent beneficial health effects. The evidence suggests that browning is a new potential strategy for the treatment of obesity and obesity-associated metabolic disorders.


Subject(s)
Adipose Tissue, Brown/pathology , Adipose Tissue, White/pathology , Obesity/pathology , Thermogenesis , Adipocytes/metabolism , Adipocytes/pathology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Cell Differentiation , Cell Transdifferentiation , Diet , Epigenesis, Genetic , Gene Expression Regulation , Humans , MicroRNAs/metabolism , Obesity/genetics , Obesity/physiopathology , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
4.
Diabetologia ; 60(6): 1076-1083, 2017 06.
Article in English | MEDLINE | ID: mdl-28299379

ABSTRACT

AIMS/HYPOTHESIS: Liver glycogen plays a key role in regulating food intake and blood glucose. Mice that accumulate large amounts of this polysaccharide in the liver are protected from high-fat diet (HFD)-induced obesity by reduced food intake. Furthermore, these animals show reversal of the glucose intolerance and hyperinsulinaemia caused by the HFD. The aim of this study was to examine the involvement of the hepatic branch of the vagus nerve in regulating food intake and glucose homeostasis in this model. METHODS: We performed hepatic branch vagotomy (HBV) or a sham operation on mice overexpressing protein targeting to glycogen (Ptg OE). Starting 1 week after surgery, mice were fed an HFD for 10 weeks. RESULTS: HBV did not alter liver glycogen or ATP levels, thereby indicating that this procedure does not interfere with hepatic energy balance. However, HBV reversed the effect of glycogen accumulation on food intake. In wild-type mice, HBV led to a significant reduction in body weight without a change in food intake. Consistent with their body weight reduction, these animals had decreased fat deposition, adipocyte size, and insulin and leptin levels, together with increased energy expenditure. Ptg OE mice showed an increase in energy expenditure and glucose oxidation, and these differences were abolished by HBV. Moreover, Ptg OE mice showed an improvement in HFD-induced glucose intolerance, which was suppressed by HBV. CONCLUSIONS/INTERPRETATION: Our results demonstrate that the regulation of food intake and glucose homeostasis by liver glycogen is dependent on the hepatic branch of the vagus nerve.


Subject(s)
Blood Glucose/physiology , Eating/physiology , Liver Glycogen/metabolism , Vagus Nerve/metabolism , Vagus Nerve/physiology , Animals , Diet, High-Fat/adverse effects , Glucose/metabolism , Homeostasis , Liver/metabolism , Mice , Obesity/etiology , Obesity/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...