Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 15(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786629

ABSTRACT

Cargo encapsulation through emulsion-based methods has been pondered over the years. Although several microemulsification techniques have been employed for the microcapsule's synthesis, there are still no clear guidelines regarding the suitability of one technique over the others or the impacts on the morphological and physicochemical stability of the final particles. Therefore, in this systematic study, we investigated the influence of synthesis parameters on the fabrication of emulsion-based microcapsules concerning morphological and physicochemical properties. Using poly(urea-formaldehyde) (PUF) microcapsules as a model system, and after determining the optimal core/shell ratio, we tested three different microemulsification techniques (magnetic stirring, ultrasonication, and mechanical stirring) and two different cargo types (100% TEGDMA (Triethylene glycol dimethacrylate) and 80% TEGDMA + 20% DMAM (N,N-Dimethylacrylamide)). The resulting microcapsules were characterized via optical and scanning electron microscopies, followed by size distribution analysis. The encapsulation efficiency was obtained through the extraction method, and the percentage reaction yield was calculated. Physicochemical properties were assessed by incubating the microcapsules under different osmotic pressures for 1 day and 1, 2, or 4 weeks. The data were analyzed statistically with one-way ANOVA and Tukey's tests (α = 0.05). Overall, the mechanical stirring resulted in the most homogeneous and stable microcapsules, with an increased reaction yield from 100% to 50% in comparison with ultrasonication and magnetic methods, respectively. The average microcapsule diameter ranged from 5 to 450 µm, with the smallest ones in the ultrasonication and the largest ones in the magnetic stirring groups. The water affinities of the encapsulated cargo influenced the microcapsule formation and stability, with the incorporation of DMAM leading to more homogeneous and stable microcapsules. Environmental osmotic pressure led to cargo loss or the selective swelling of the shells. In summary, this systematic investigation provides insights and highlights commonly overlooked factors that can influence microcapsule fabrication and guide the choice based on a diligent analysis of therapeutic niche requirements.

2.
Polymers (Basel) ; 15(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37631403

ABSTRACT

The field of dental materials is undergoing rapid advancements in the pursuit of an innovative generation of dental polymeric restorative materials. There is a growing interest in the development of a distinct category of dental polymers that transcend the conventional role of inertly filling prepared cavities. Instead, these materials possess the capacity to actively detect and respond to alterations within the host environment by undergoing dynamic and controlled molecular changes. Despite the well-established status of stimuli-responsive polymeric systems in other fields, their implementation in dentistry is still in its nascent stages, presenting a multitude of promising opportunities for advancement. These systems revolve around the fundamental concept of harnessing distinctive stimuli inherent in the oral environment to trigger precise, targeted, predictable, and demand-driven responses through molecular modifications within the polymeric network. This review aims to provide a comprehensive overview of the diverse categories of stimuli-responsive polymers, accentuating the critical aspects that must be considered during their design and development phases. Furthermore, it evaluates their current application in the dental field while exploring potential alternatives for future advancements.

3.
Dent J (Basel) ; 9(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34435995

ABSTRACT

How dentists cure a resin-based material has deleterious effects on the material's properties and its interaction with surrounding dental tissues. Biofilm accumulation has been implicated in the pathogenesis of carious lesions around dental restorations, with its composition manifesting expressed dysbiosis in patients suffering from dental caries. To evaluate the influence of varying radiant exposure on the degree of conversion (DC%), Streptococcus mutans biofilm growth, and surface roughness of bulk-fill composites under different light-curing conditions. Two light-curing units (LCU) at 600 and 1000 mW/cm2 were used to simulate curing conditions with different angulations (∢20° and ∢35°) or 2 mm-distance displacements of the LCU tip. The radiant exposure (RE) was assessed, and the composites were analyzed for DC%. Biofilm formation was induced over the bulk-fill composites and analyzed via colony-forming units counting and scanning electron microscopy (SEM). The surface roughness was analyzed via a profilometer and SEM after biofilm formation. Curing conditions with different angulation or displacement decreased RE compared to the "optimal condition". The moderately (∢35°) angulated LCU tip and low (600 mW/cm2) radiant emittance significantly reduced the DC% (p < 0.05). The difference in DC% between the top and bottom of the composites ranged from 8 to 11% for 600 mW/cm2 and 10 to 20% for 1000 mW/cm2. Greater S. mutans biofilm and surface changes were found in composites with non-optimal RE delivery (e.g., tip displacement and angulation) (p < 0.05). Inadequate polymerization of bulk-fill composites was associated with more biofilm accumulation and surface topography changes. Overall, non-optimally performed curing procedures reduced the amount of delivered RE, which led to low DC%, more biofilm formation, and higher surface roughness. The improper light-curing of bulk-fill composites compromises their physicochemical and biological properties, which could lead to inferior clinical performance and reduced restorative treatments' longevity.

4.
J Mech Behav Biomed Mater ; 98: 90-95, 2019 10.
Article in English | MEDLINE | ID: mdl-31203101

ABSTRACT

Thiourethane (TU) additives and difunctional, polymerizable crosslinking agents have been demonstrated to increase toughness in methacrylate-based materials. The aim of this study was to evaluate the potential reinforcement of acrylic denture bases by combining thiourethane additives and 1,6 hexanediol dimethacrylate (HDDMA) as an additional crosslinking agent. One commercial acrylic resin (Nature-Cryl MC; GC America) was tested by adding 0 (control) or 10 wt% TU, each of them combined with 0 (control), 10, 20 and 30 wt% HDDMA, for a total of 8 experimental groups. Materials were processed using microwave energy (500 W for 3 min) using microwave-safe molds and flasks. Flexural strength, modulus and toughness were obtained in 3-point bending (ISO 4049) using bars measuring 2 × 2x25 mm (n = 6). Dynamic mechanical analysis was used to determine glass transition temperature (Tg), breadth of tan delta (as a measure of polymer heterogeneity) and crosslinking density in 1 × 3x15 mm bars (n = 6) tested in tension, using a 3 °C/min heating rate (-30 to 180 °C). Viscosity samples were evaluated in a parallel plate reometer. Data were analyzed by two-way ANOVA and Tukey's test (α = 0.05). Results showed that on the samples not containing TU, HDDMA up to 20 wt% increased the flexural strength and thoughness (and up to 30 wt% HDDMA increased the modulus). The addition of TU did not affect those properties (except for the increase in elastic modulus), but the combination TU + HDDMA led to decreased properties overall. The addition of HDDMA decreased the viscosity for all materials, and the presence of TU did not affect viscosity. The Tg increased linearly with the concentration of HDDMA, except in the groups containing TU - in general, the addition of TU reduced Tg. The crosslinking density increased with the addition of HDDMA for all materials, regardless of the presence of TU. The addition of TU significantly decreased crosslinking density. The breadth of tan delta was not affected by the addition of HDDMA, but significantly increased with the addition of TU. In conclusion, the chain-breaking effect of TU on polymerizing methacrylates was deleterious in the case of methyl methacrylate, since it forms a linear polymer. The addition of HDDMA up to 20 wt% and not combined with TU significantly improved the tested properties.


Subject(s)
Acrylates/chemistry , Denture Bases , Microwaves , Urethane/chemistry
5.
J Dent ; 88: 103110, 2019 09.
Article in English | MEDLINE | ID: mdl-31022421

ABSTRACT

OBJECTIVES: Insufficient radiant exposure (J/cm2) may provide an early trigger in a cascade of detrimental responses on incrementally-place composite, especially the bottom layer. This study aimed to assess the influence of poor radiant exposure, the degree of conversion (%DC), water sorption/ solubility and S. mutans biofilm formation on conventional, incrementally placed composites and to establish a relationship between these factors. METHODS: Two light units operating at 600 and 1000 mW/cm2 and four most common operator-dependent curing conditions had the radiant exposure (RE) recorded. All the specimens were subjected to S. mutans biofilm model for 14 days. The %DC, biofilm formation expressed by colony-forming units (CFU), water sorption/ solubility and surface roughness/ SEM were assessed. Data were submitted to two-way ANOVA and Tukey post-hoc test (α = 0.05). Pearson correlation was also determined. RESULTS: The influence of RE on S. mutans CFU values and DC are dependent on the curing conditions and irradiance (p < 0.05). A negative relationship was observed between RE and biofilm formation. The operator-dependent curing conditions have shown RE reduction varying from 49.4% to 73.5% in relation to control. The difference in DC between top/bottom of cylinder varied from 13% to 21% for 1000 mW/cm2and from 29% to 53% for LCU600. The roughness, solubility and salivary sorption were greater for low RE. CONCLUSION: Poor, deficient curing procedures provide an early trigger in a negative pathway of events for incrementally-place dental composite including a biological response by increased biofilm formation by S. mutans, a relevant factor for secondary caries development. SIGNIFICANCE: The susceptibility to variation in the outcomes was RE -dependent. The optimization of the curing procedures ensures the maximum performance in the chain of events involved in the light curing process of resin-based materials and potentially reduce the risk factors of secondary caries development.


Subject(s)
Biofilms/radiation effects , Composite Resins/radiation effects , Curing Lights, Dental , Light-Curing of Dental Adhesives/methods , Bacterial Adhesion , Composite Resins/chemistry , Dental Materials , Humans , Materials Testing , Solubility , Streptococcus mutans , Water/chemistry
6.
Biomater Investig Dent ; 6(1): 81-89, 2019.
Article in English | MEDLINE | ID: mdl-31998875

ABSTRACT

Thio-urethane oligomers improve conversion and mechanical properties of resin cements. The objective of this study was to evaluate the effect of resin cements formulated with thio-urethane (TU) oligomers on microtensile bond strength (µTBS) of ceramics to composites subjected to thermal/mechanical cycling. Methods: BisGMA/UDMA/TEGDMA (50/30/20 wt%) containg 0 (control, EC) or 20 wt% aliphatic or aromatic thiourethane (HDDI and BDI, respectively) were mixed with CQ/amine (0.2/0.8 wt%) and 25 wt% 0.7um Ba glass. Rely X Ultimate (RU-3M ESPE) was used as the commercial control. The cements were sandwiched between ceramic (IPS e.max Press) and resin composite blocks (Filtek Supreme, 3 M-ESPE). Eight bonded blocks were produced per experimental group. Prior to bonding, ceramic surfaces were etched (20 s - 10% HF) and silanized. Composite surfaces were treated with Single Bond Universal (3 M ESPE). Specimens were stored for 24 h in distilled water at 37 °C, and then either tested immediately, or subjected to thermal (10,000, 5 °C and 55 °C) or mechanical cycling (300,000 cycles). Sticks (1 mm2, average of 25 sticks per block) were cut and tested for µTBS (1.0 mm/min). Data were analyzed with two-way ANOVA/Tukey's test (α = 5%). Fracture surfaces were analyzed to determine failure modes. Results: The µTBS for HDDI and RU was significantly higher than BDI and EC cements. BDI led to significantly higher µTBS than EC after 24 h, Tc and Mf. µTBS decreased significantly after thermal/mechanical cycling for all groups. Failure modes were predominantly adhesive or mixed. Significance: The use of selected thio-urethane oligomers was able to increase the µTBS of composite-cement-ceramic specimens. Tc and Mf reduced µTBS for all resins cements.

SELECTION OF CITATIONS
SEARCH DETAIL
...