Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 30(10): 2068-2077, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38530160

ABSTRACT

PURPOSE: High-grade gliomas (HGG) carry a poor prognosis, with glioblastoma accounting for almost 50% of primary brain malignancies in the elderly. Unfortunately, despite the use of multiple treatment modalities, the prognosis remains poor in this population. Our preclinical studies suggest that the presence of aromatase expression, encoded by CYP19A1, is significantly upregulated in HGGs. Remarkably, we find that letrozole (LTZ), an FDA-approved aromatase inhibitor, has marked activity against HGGs. PATIENTS AND METHODS: We conducted a phase 0/I single-center clinical trial (NCT03122197) to assess the tumoral availability, pharmacokinetics (PK), safety, and tolerability of LTZ in recurrent patients with HGG. Planned dose cohorts included 2.5, 5, 10, 12.5, 15, 17.5, and 20 mg of LTZ administered daily pre- and postsurgery or biopsy. Tumor samples were assayed for LTZ content and relevant biomarkers. The recommended phase 2 dose (R2PD) was determined as the dose that resulted in predicted steady-state tumoral extracellular fluid (ECF; Css,ecf) >2 µmol/L and did not result in ≥33% dose-limiting adverse events (AE) assessed using CTCAE v5.0. RESULTS: Twenty-one patients were enrolled. Common LTZ-related AEs included fatigue, nausea, musculoskeletal, anxiety, and dysphoric mood. No DLTs were observed. The 15 mg dose achieved a Css,ecf of 3.6 ± 0.59 µmol/L. LTZ caused dose-dependent inhibition of estradiol synthesis and modulated DNA damage pathways in tumor tissues as evident using RNA-sequencing analysis. CONCLUSIONS: On the basis of safety, brain tumoral PK, and mechanistic data, 15 mg daily is identified as the RP2D for future trials.


Subject(s)
Brain Neoplasms , Glioma , Letrozole , Neoplasm Grading , Neoplasm Recurrence, Local , Humans , Letrozole/administration & dosage , Letrozole/pharmacokinetics , Letrozole/therapeutic use , Letrozole/adverse effects , Female , Glioma/drug therapy , Glioma/pathology , Middle Aged , Male , Aged , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
2.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36328378

ABSTRACT

BACKGROUND: Metformin slows tumor growth and progression in vitro, and in combination with chemoradiotherapy, resulted in high overall survival in patients with head and neck cancer squamous cell carcinoma (HNSCC) in our phase 1 clinical trial (NCT02325401). Metformin is also postulated to activate an antitumor immune response. Here, we investigate immunologic effects of metformin on natural killer (NK) and natural killer T cells, including results from two phase I open-label studies in patients with HNSCC treated with metformin (NCT02325401, NCT02083692). METHODS: Peripheral blood was collected before and after metformin treatment or from newly diagnosed patients with HNSCC. Peripheral immune cell phenotypes were evaluated using flow cytometry, cytokine expression by ELISA and/or IsoLight, and NK cell-mediated cytotoxicity was determined with a flow-based NK cell cytotoxicity assay (NKCA). Patient tumor immune infiltration before and after metformin treatment was analyzed with immunofluorescence. NK cells were treated with either vehicle or metformin and analyzed by RNA sequencing (RNA-seq). NK cells were then treated with inhibitors of significant pathways determined by RNA-seq and analyzed by NKCA, ELISA, and western blot analyses. RESULTS: Increased peripheral NK cell activated populations were observed in patients treated with metformin. NK cell tumor infiltration was enhanced in patients with HNSCC treated with metformin preoperatively. Metformin increased antitumorigenic cytokines ex vivo, including significant increases in perforin. Metformin increased HNSCC NK cell cytotoxicity and inhibited the CXCL1 pathway while stimulating the STAT1 pathway within HNSCC NK cells. Exogenous CXCL1 prevented metformin-enhanced NK cell-mediated cytotoxicity. Metformin-mediated NK cell cytotoxicity was found to be AMP-activated protein kinase independent, but dependent on both mechanistic target of rapamycin and pSTAT1. CONCLUSIONS: Our data identifies a new role for metformin-mediated immune antitumorigenic function through NK cell-mediated cytotoxicity and downregulation of CXCL1 in HNSCC. These findings will inform future immunomodulating therapies in HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Metformin , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Killer Cells, Natural , Cytokines/metabolism , Chemokine CXCL1/metabolism , Chemokine CXCL1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...