Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(19): 16547-16560, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35601294

ABSTRACT

This paper deals with the synthesis, structural studies, and behavior in solution of unprecedented coordination complexes built by the association of a panel of 14 representative thiosemicarbazone ligands with the cluster [Mo2O2S2]2+. These complexes have been thoroughly characterized both in the solid state and in solution by XRD and by NMR, respectively. In particular, HMBC 1H{15N} and 1H DOSY NMR experiments bring important elements for understanding the complexes' behavior in solution. These studies demonstrate that playing on the nature and the position of various substituents on the ligands strongly influences the coordination modes of the ligands as well as the numbers of isomers in solution, mainly 2 products for the majority of complexes and up to 5 for some of them.

2.
J Inorg Biochem ; 226: 111627, 2022 01.
Article in English | MEDLINE | ID: mdl-34689079

ABSTRACT

This paper deals with the biological potential of coordination compounds based on binuclear core [MoV2O2E2]2+ (E = O or S) coordinated with commercially available ligands such as oxalates (Ox2-), L-cysteine (L-cys2-), L-histidine (L-his-), Iminodiacetate (IDA2-), Nitrilotriacetate (HNTA2- or NTA3-) or ethylenediamine tetraacetate (EDTA4-) by means of various in vitro assays in a screening approach. Results suggest that the obtained complexes show weak antibacterial and antifungal properties while not being cytotoxic on cancerous and mammalian cells. In contrast, [Mo2O2E2(L-cys)2]2- complexes stand out as powerful antioxidant, whereas [Mo2O2E2(EDTA)]2- associating tetraphenylphosphonium counter-cations display strong antibiotic activity. Finally, some complexes have evidenced a positive activity towards the growing of spirulina platensis together with a modification of the proportions of biological components inside the cells. These findings reveal promising bioactivity of the bridged binuclear Mo(+V) cores inside complexes and encourage further research for new highly active yet non-toxic molecules for biological and biomedical applications.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Antineoplastic Agents , Antioxidants , Biomass , Coordination Complexes , Spirulina/growth & development , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Molybdenum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...