Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 133(2): 168-173, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34872873

ABSTRACT

Collagen is a major structural protein, and abnormalities in collagen structure can lead to several connective tissue diseases such as osteoporosis. We report the preparation of a collagen sensor using a synthetic peptide as proof of concept for detecting the collagen like peptides. The synthetic peptide 9-fluorenylmethyloxycarbonyl (Fmoc)-(prolyl-prolyl-glycine)7-OH was coupled to thiazolidine, which gets adsorbed on metal surfaces. Fmoc-(prolyl-prolyl-glycine)7-thiazolidine was immobilized on the surface of a quartz crystal microbalance (QCM) electrode used as a sensor probe. The collagen model peptide (prolyl-prolyl-glycine)10 could be detected, and the model peptide was directly adsorbed onto the surface of the electrode and was not removed by washing with hot water. Additionally, it was proved that the sensitivity of the probe could be enhanced to nanogram order by immobilizing the blocking reagent, Fmoc-prolyl-prolyl-glycine, within the gap of sensor probes on the electrode. The detectable mass of the model peptide decreased as the probe gap became narrower because of self-association of the probes. Moreover, the sensitivity of sensor probes also decreases as the gap between the probes becomes wider. Therefore, the optimum distance between the immobilized probes was determined from the simulation based on the experimental values. The association rate of the model peptide with sensor probes could be quantitatively determined when the distance between the probes was optimum, and this result suggested that most sensor probes could form a triple helical structure with the model peptide.


Subject(s)
Peptides , Quartz Crystal Microbalance Techniques , Collagen , Electrodes , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...