Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Cell Sci ; 133(24)2020 12 29.
Article in English | MEDLINE | ID: mdl-33262309

ABSTRACT

Golgi stacks are the basic structural units of the Golgi. Golgi stacks are separated from each other and scattered in the cytoplasm of Drosophila cells. Here, we report that the ARF-GEF inhibitor Brefeldin A (BFA) induces the formation of BFA bodies, which are aggregates of Golgi stacks, trans-Golgi networks and recycling endosomes. Recycling endosomes are located in the centers of BFA bodies, while Golgi stacks surround them on their trans sides. Live imaging of S2 cells revealed that Golgi stacks repeatedly merged and separated on their trans sides, and BFA caused successive merger by inhibiting separation, forming BFA bodies. S2 cells carrying genome-edited BFA-resistant mutant Sec71M717L did not form BFA bodies at high concentrations of BFA; S2 cells carrying genome-edited BFA-hypersensitive mutant Sec71F713Y produced BFA bodies at low concentrations of BFA. These results indicate that Sec71 is the sole BFA target for BFA body formation and controls Golgi stack separation. Finally, we showed that impairment of Sec71 in fly photoreceptors induces BFA body formation, with accumulation of both apical and basolateral cargoes, resulting in inhibition of polarized transport.


Subject(s)
Drosophila , Golgi Apparatus , Animals , Brefeldin A/pharmacology , Endosomes , trans-Golgi Network
2.
Commun Integr Biol ; 13(1): 59-62, 2020.
Article in English | MEDLINE | ID: mdl-32395196

ABSTRACT

The trans-Golgi network (TGN) and recycling endosome (RE) have been recognized as sorting centers, the former for newly synthesized and the latter for endocytosed proteins. However, recent findings have revealed that TGN also receives endocytosed materials and RE accepts newly synthesized proteins destined to the plasma membrane. Recently, we reported that in both Drosophila and microtubule-disrupted HeLa cells, REs are associated with the trans-side of Golgi stacks. REs are highly dynamic: their separation from and association with Golgi stacks are often observed. Importantly, a newly synthesized cargo, glycosylphosphatidylinositol-anchored-GFP was found to be concentrated in Golgi-associated REs (GA-REs), while another cargo VSVG-GFP was excluded from GA-REs before post-Golgi trafficking to the plasma membrane. This suggested that the sorting of cargos takes place at the interface of Golgi stacks and GA-REs. In this study, we demonstrated that REs could associate with Golgi stacks in sea urchin embryos, further indicating that the association of REs with Golgi stacks is a well-conserved phenomenon in the animal kingdom.

3.
J Cell Sci ; 133(4)2020 02 26.
Article in English | MEDLINE | ID: mdl-31974113

ABSTRACT

Historically, the trans-Golgi network (TGN) has been recognized as a sorting center of newly synthesized proteins, whereas the recycling endosome (RE) is a compartment where endocytosed materials transit before being recycled to the plasma membrane. However, recent findings revealed that both the TGN and RE connect endocytosis and exocytosis and, thus, are functionally overlapping. Here we report, in both Drosophila and microtubule-disrupted HeLa cells, that REs are interconvertible between two distinct states, namely Golgi-associated REs and free REs. Detachment and reattachment of REs and Golgi stacks are often observed, and newly synthesized glycosylphosphatidylinositol-anchored cargo protein but not vesicular stomatitis virus G protein is transported through these two types of RE. In plants, there are two types of TGN - Golgi-associated TGN and Golgi-independent TGN. We show that dynamics of REs in both Drosophila and mammalian cells are very similar compared with those of plant TGNs. And, together with the similarity on the molecular level, our results indicate that fly and mammalian REs are organelles that are equivalent to TGNs in plants. This suggests that the identities and functional relationships between REs and TGNs should be reconsidered.


Subject(s)
Drosophila , Golgi Apparatus , Animals , Endosomes/metabolism , Golgi Apparatus/metabolism , HeLa Cells , Humans , Protein Transport , trans-Golgi Network/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...