Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(6): e27456, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509990

ABSTRACT

Ultraviolet (UV) light is an effective disinfection method. In particular, UV light-emitting diodes (UV-LEDs) are expected to have many applications as light sources owing to their compact form factor and wide range of choices of wavelengths. However, the UV sensitivity of microorganisms for each UV wavelength has not been evaluated comprehensively because standard experimental conditions based on LED characteristics have not been established. Therefore, it is necessary to establish a standard evaluation method based on LED characteristics. Here, we developed a new UV-LED device based on strictly controlled irradiation conditions using LEDs for each wavelength (250-365 nm), checked the validity of the device characteristics and evaluated the UV sensitivity of Escherichia coli using this new evaluation method. For this new device, we considered accurate irradiance, accurate spectra, irradiance uniformity, accurate dose, beam angle, surrounding material reflections, and sample condition. From our results, the following UV irradiation conditions were established as standard: 1 mW/cm2 irradiance, bacterial solution with absorbance value of A600 = 0.5 diluted 10 times solution, solution volume of 1 mL, working distance (WD) of 100 mm. In order to compare the effects of irradiation under uniform conditions on inactivation of microorganisms, we assessed inactivation effect of E. coli by LED irradiation at each wavelength using the U280 LED as a standard wavelength. The inactivation effect for U280 LED irradiation was -0.95 ± 0.21 log at a dose of 4 mJ/cm2. Under this condition of dose, our results showed a high wavelength dependence of the inactivation effect at each UV wavelength peaking at 267 nm. Our study showed that this irradiation system was validated for the standard UV irradiation system and could be contributed to the establishment of food and water hygiene control methods and the development of equipment for the prevention of infectious diseases.

2.
Sci Rep ; 12(1): 4319, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35279697

ABSTRACT

In plants, the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) perceives UV-B and induces UV-B responses. UVR8 absorbs a range of UV-B (260-335 nm). However, the responsiveness of plants to each UV-B wavelength has not been intensively studied so far. Here, we performed transcriptome and metabolome analyses of Arabidopsis using UV light emitting diodes (LEDs) with peak wavelengths of 280 and 310 nm to investigate the differences in the wavelength-specific UV-B responses. Irradiation with both UV-LEDs induced gene expression of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), which has a central role in the UVR8 signaling pathway. However, the overall transcriptomic and metabolic responses to 280 and 310 nm UV-LED irradiation were different. Most of the known UV-B-responsive genes, such as defense-related genes, responded only to 280 nm UV-LED irradiation. Lipids, polyamines and organic acids were the metabolites most affected by 280 nm UV-LED irradiation, whereas the effect of 310 nm UV-LED irradiation on the metabolome was considerably less. Enzymatic genes involved in the phenylpropanoid pathway upstream in anthocyanin biosynthesis were up-regulated only by 280 nm UV-LED irradiation. These results revealed that the responsivenesses of Arabidopsis to 280 and 310 nm UV-B were significantly different, suggesting that UV-B signaling is mediated by more complex pathways than the current model.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation, Plant , Metabolome , Transcriptome , Ultraviolet Rays
3.
Biosci Biotechnol Biochem ; 86(4): 502-508, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35092419

ABSTRACT

UV-C irradiation increases resveratrol content in grape skins, but it reaches a maximum at a certain UV-C dose. In contrast, UV-B has a weak resveratrol-enhancing effect at low doses, but it has not been investigated at high doses. In this study, we investigated the effect of high-dose UV-B on resveratrol contents in grape skins. Irradiation of Muscat Bailey A with 290 nm UV-B LED at 22 500 and 225 000 µmol m-2 increased the resveratrol contents in the grape skins by 2.1- and 9.0-fold, respectively, without significant increases in other phenolic compounds. The effect was also confirmed for 2 other cultivars: Shine Muscat and Delaware. Transcriptome analysis of the grape skins of Muscat Bailey A immediately after irradiation with UV-B at 225 000 µmol m-2 showed that genes related to biotic and abiotic stresses were upregulated. Hence, it was suggested that high-dose UV-B irradiation induces a stress response and specifically activates resveratrol biosynthesis.


Subject(s)
Stilbenes , Vitis , Fruit/chemistry , Phenols , Resveratrol , Ultraviolet Rays , Vitis/genetics , Vitis/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...