Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1401234, 2024.
Article in English | MEDLINE | ID: mdl-38812675

ABSTRACT

Phage therapy has re-emerged in modern medicine as a robust antimicrobial strategy in response to the increasing prevalence of antimicrobial-resistant bacteria. However, bacterial resistance to phages can also arise via a variety of molecular mechanisms. In fact, several clinical studies on phage therapy have reported the occurrence of phage-resistant variants, representing a significant concern for the successful development of phage-based therapies. In this context, the fitness trade-offs between phage and antibiotic resistance have revealed new avenues in the field of phage therapy as a countermeasure against phage resistance. This strategy forces to restore the antibiotic susceptibility of antimicrobial-resistant bacteria as compensation for the development of phage resistance. Here, we present the key achievements of these fitness trade-offs, notably focusing on the enhancement of antibiotic sensitivity through the induction of large chromosomal deletions by bacteriophage infection. We also describe the challenges of this strategy that need to be overcome to promote favorable therapeutic outcomes and discuss future directions. The insights gained from the trade-offs between phage and antibiotic sensitivity will help maximize the potential of phage therapy for the treatment of infectious diseases.

2.
J Vet Med Sci ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710622

ABSTRACT

Mycoplasma bovis mastitisis highly contagious and disrupts lactation, posing a significant threat to the dairy industry. While the mammary gland's defence mechanism involves epithelial cells and mononuclear cells (MNC), their interaction with M. bovis remains incompletely understood. In this study, we assessed the immunological reactivity of bovine mammary epithelial cells (bMEC) to M. bovis through co-culture with MNC. Upon co-culture with MNC, the mRNA expression levels of interleukin (IL)-1ß,IL-6, IL-8 and tumor necrosis factor (TNF)-α in bMEC stimulated by M. bovis showed a significant increase compared to monoculture. Additionally, when stimulated with M. bovis, the culture supernatant exhibited significantly higher concentrations of IL-6 and interferon (IFN)-γ, while IL-1ß concentration tended to be higher in co-culture with MNC than in monoculture. Furthermore, the mRNA expression levels of toll-like receptor (TLR) 2 in bMEC stimulated with M. bovis tended to increase, and TLR4 significantly increased when co-cultured with MNC compared to monocultures. However, the surface expression levels in bMEC did not exhibit significant changes between co-culture and monoculture. Overall, our research indicates that the inflammatory response of bMEC is increased during co-culture with MNC, suggesting that the interaction between bMEC and MNC in the mammary gland amplifies the immune response to M. bovis in cows affected by M. bovis mastitis.

3.
iScience ; 26(12): 108465, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38089578

ABSTRACT

Bacteriophages are expected to be therapeutic agents against infectious diseases. Streptococcus mutans are involved in dental plaque formation related to dental caries and periodontitis. In S. mutans, lytic bacteriophages have been isolated previously, but the isolation of temperate bacteriophage has not been reported although their presence in the genome has been confirmed. Here, we report the isolation of temperate bacteriophage, φKSM96, from S. mutans. φKSM96 has a circular DNA 39,820 bp long and reveals Siphoviridae morphology. φKSM96 shows a broad range of susceptibility against S. mutans strains with different serotypes. By the addition of φKSM96, S. mutans growth and biofilm formation were significantly inhibited. In cocultures of S. mutans with other bacterial species, the proportion of S. mutans significantly decreased in the presence of φKSM96. In summary, φKSM96 shows selective anti-S. mutans activity. The isolation of temperate bacteriophage is important for future genetic manipulation to create more efficient bacteriophages.

4.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958612

ABSTRACT

In recent decades, phage therapy has been overshadowed by the widespread use of antibiotics in Western countries. However, it has been revitalized as a powerful approach due to the increasing prevalence of antimicrobial-resistant bacteria. Although bacterial resistance to phages has been reported in clinical cases, recent studies on the fitness trade-offs between phage and antibiotic resistance have revealed new avenues in the field of phage therapy. This strategy aims to restore the antibiotic susceptibility of antimicrobial-resistant bacteria, even if phage-resistant variants develop. Here, we summarize the basic virological properties of phages and their applications within the context of antimicrobial resistance. In addition, we review the occurrence of phage resistance in clinical cases, and examine fitness trade-offs between phage and antibiotic sensitivity, exploring the potential of an evolutionary fitness cost as a countermeasure against phage resistance in therapy. Finally, we discuss future strategies and directions for phage-based therapy from the aspect of fitness trade-offs. This approach is expected to provide robust options when combined with antibiotics in this era of phage 're'-discovery.


Subject(s)
Bacterial Infections , Bacteriophages , Phage Therapy , Humans , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Phage Therapy/methods , Bacterial Infections/therapy , Bacteria
5.
JHEP Rep ; 5(12): 100909, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37965159

ABSTRACT

Phage therapy has been overshadowed by antibiotics for decades. However, it is being revisited as a powerful approach against antimicrobial-resistant bacteria. As bacterial microbiota have been mechanistically linked to gastrointestinal and liver diseases, precise editing of the gut microbiota via the selective bactericidal action of phages has prompted renewed interest in phage therapy. In this review, we summarise the basic virological properties of phages and the latest findings on the composition of the intestinal phageome and the changes associated with liver diseases. We also review preclinical and clinical studies assessing phage therapy for the treatment of gastrointestinal and liver diseases, as well as future prospects and challenges.

6.
Steroids ; 200: 109328, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863411

ABSTRACT

Fasting induces metabolic changes in muscles, which are differentiated by muscle fiber type. In this study, the mechanism of fasting-induced muscle atrophy in rats was examined to determine the differences between muscle fiber types in energy production. Fasting for 96 h did not alter the weight of the soleus (SOL), a fiber type I muscle, but did significantly reduce the weight of gastrocnemius (GM), a fiber type II muscle. GM, SOL and blood pregnenolone and testosterone levels decreased under fasting, which induced energy deprivation, whereas corticosterone (CORT) levels significantly increased. However, the expression of 3ß-HSD and P45011ß in GM was unaffected by fasting. The decrease in GM weight may be due to decreased levels of testosterone and reduced synthesis of mammalian target of rapamycin (mTOR). Significant increases in CORT both GM and SOL were associated with increases in the amount of branched-chain amino acids available for energy production. However, decreased levels of mTOR and IGF1 and increased levels of CORT and IL-6 in SOL suggest that GM proteolysis was followed by SOL proteolysis for additional energy production. In conclusion, IGF1 levels decreased significantly in SOL, whereas those of IL-6 significantly increased in SOL and blood but decreased in GM. Blood branched-chain amino acids (BCAA) levels were unaffected due to fasting, whereas an increase was noted in the levels of BCAA in GM and SOL. These results show that fasting for 96 h restricts energy supply, producing fast-twitch muscle atrophy followed by slow-twitch muscle atrophy.


Subject(s)
Interleukin-6 , Muscle Fibers, Skeletal , Rats , Male , Animals , Interleukin-6/metabolism , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Fasting , Amino Acids, Branched-Chain/metabolism , Testosterone/metabolism , TOR Serine-Threonine Kinases/metabolism , Mammals/metabolism
7.
Sci Rep ; 12(1): 21297, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494564

ABSTRACT

Staphylococcus virus ΦSA012 has a wide host range and efficient lytic activity. Here, we assessed the biological stability of ΦSA012 against temperature, freeze-thawing, and pH to clinically apply the phage. In addition, inoculation of ΦSA012 through i.p. and i.v. injections into mice revealed that phages were reached the limit of detection in serum and accumulated notably spleens without inflammation at 48 h post-inoculation. Furthermore, inoculation of ΦSA012 through s.c. injections in mice significantly induced IgG, which possesses neutralizing activity against ΦSA012 and other Staphylococcus viruses, ΦSA039 and ΦMR003, but not Pseudomonas viruses ΦS12-3 and ΦR18 or Escherichia viruses T1, T4, and T7 in vitro. Immunoelectron microscopic analysis showed that purified anti-phage IgG recognizes the long-tail fiber of staphylococcus viruses. Although S. aureus inoculation resulted in a 25% survival rate in a mouse i.p. model, ΦSA012 inoculation (i.p.) improved the survival rate to 75%; however, the survival rate of ΦSA012-immunized mice decreased to less than non-immunized mice with phage i.v. injection at a MOI of 100. These results indicated that ΦSA012 possesses promise for use against staphylococcal infections but we should carefully address the appropriate dose and periods of phage administration. Our findings facilitate understandings of staphylococcus viruses for phage therapy.


Subject(s)
Phage Therapy , Staphylococcal Infections , Mice , Animals , Phage Therapy/methods , Staphylococcus Phages/ultrastructure , Staphylococcus aureus , Staphylococcus , Staphylococcal Infections/therapy , Myoviridae/ultrastructure , Immunoglobulin G
8.
Microbiol Resour Announc ; 11(4): e0004222, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35343803

ABSTRACT

Bovine pneumonia is a disease that causes significant economic losses in livestock industries and is vital for animal welfare. The whole-genome sequence of Pasteurella multocida strain Pm1, isolated from a calf suffering from pneumonia in Japan, is reported here.

9.
Mol Cell Endocrinol ; 545: 111561, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35041905

ABSTRACT

Bisphenol A (BPA) has been shown to exhibit various toxic effects, including the induction of reproductive disorders. Generally, BPA is converted to conjugated metabolites, leading to bio-inactivation. On the other hand, the toxicity of conjugated metabolites is not fully understood. Notably, the placenta develops the sulfate-sulfatase pathway, which transports and reactivates sulfated steroids. Therefore, we investigated the potential adverse effects of the BPA-sulfate conjugate (BPA-S) on human placenta-derived BeWo cytotrophoblasts. In the present study, high-concentration BPA-S (100 µM) induced significant inhibition of BeWo growth, with effects similar to those seen with unconjugated BPA (100 µM and 100 nM). This growth inhibition was restored by treatment of the cells with an inhibitor of the organic anion-transporting peptides (OATPs) (bromosulphophthalein) or with a sulfatase (STS) inhibitor (STX64). BeWo exhibits expression of the genes encoding OATP1A2 and OATP4A1 as known sulfated steroid transporters and STS, suggesting that BPA-S suppresses cell growth activity via the sulfate-sulfatase pathway. In addition, cell cycle analysis revealed that BPA-S (100 µM) increased the fraction of cytotrophoblasts in the G2/M phases and significantly decreased the accumulation of the transcript encoding Aurora kinase A (AURKA), which is a critical regulator of cellular division. These results suggested that BPA-S triggers cell cycle arrest and inhibits proliferation of BeWo cytotrophoblasts by decreased AURKA, an effect that is mediated by the sulfate-sulfatase pathway. Overall, these findings provide insights into the reactivation of sulfated endocrine-disrupting chemicals and subsequent adverse effects.


Subject(s)
Aurora Kinase A , Trophoblasts , Benzhydryl Compounds/toxicity , Cell Cycle , Cell Division , Female , Humans , Phenols , Pregnancy , Sulfates/metabolism , Sulfates/pharmacology , Trophoblasts/metabolism
10.
J Vet Med Sci ; 84(3): 420-428, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35082195

ABSTRACT

Although Escherichia coli is a commensal bacterium of the bovine vaginal microbiota, it is an important pathogenic bacterium that causes diseases of the reproductive tract and sub-fertility. Recent studies have focused on virulence factors (VFs) of intrauterine E. coli; however, actual endometrial VFs have not been clearly identified. The purpose of this study was to identify the VFs of E. coli associated with clinical metritis and endometritis. Thirty-two strains of E. coli and four mixed Trueperella pyogenes (TP) strains were detected in the uterus of 19 Holstein dairy cows with obvious clinical signs (between 8 and 66 days postpartum). The presence of six E. coli VFs (fimH, fyuA, kpsMTII, hra1, csgA, and astA) was examined by PCR, and clinical signs and reproductive performance (mixed TP, the percentage of polymorphonuclear neutrophils [PMN%], days to uterine involution, etc.) were evaluated. Four VFs (fimH, hra1, csgA, and astA) were detected in all E. coli strains, whereas fyuA and kpsMTII were detected in 94% and 50% of strains, respectively. Cows with E. coli strains harboring kpsMTII exhibited significantly severe clinical scores (vaginal discharge score, PMN%, uterine involution), suggesting that kpsMTII is a key VF for progression of clinical metritis and endometritis. In the present study, we clearly identified six VFs associated with clinical metritis and endometritis. In addition, E. coli strains with kpsMTII probably play a crucial role in the progression of clinical metritis and endometritis.


Subject(s)
Cattle Diseases , Endometritis , Escherichia coli Infections , Animals , Cattle , Cattle Diseases/pathology , Endometritis/microbiology , Endometritis/veterinary , Escherichia coli , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Female , Postpartum Period , Uterus/pathology , Virulence Factors
11.
Steroids ; 177: 108947, 2022 01.
Article in English | MEDLINE | ID: mdl-34843801

ABSTRACT

Testicular steroidogenesis is depressed by adrenal-secreted corticosterone (CORT) under stress. However, the mechanisms are not well understood. This study investigated the details of testicular steroidogenesis depression during fasting. Blood levels of adrenocorticotropic hormone secreted from the pituitary glands increased, but blood CORT was not changed in rats that fasted for 96 h, in spite of the rats being severely stressed. CORT in fasting adult male rats increased more than three times in the testis, but reduced testicular testosterone (T) and blood T levels to 5% and 2% of the control, respectively, was observed. The contents of T precursor (except PGN) were drastically reduced in the fasted-rat testes. Testicular CORT levels were elevated, but the enzymatic activity of cytochrome P45011ß, which produces CORT, remained unchanged. The enzymatic activities of 3ß-hydroxysteroid dehydrogenase (3ß-HSD), mediating the conversion of pregnenolone to progesterone, decreased in the fasted-rat testes. Thus, fasting suppressed testicular steroidogenesis by affecting the enzyme activity of 3ß-HSD in the testes and drastically reduced T and increased CORT synthesis. It can be considered that T synthesis involved in cell proliferation is suppressed due to lack of energy during fasting. Conversely, 11ß-hydroxylase enzyme activity was induced and CORT synthesis is increased to cope with the fasting stress. Hence, it can be concluded that CORT synthesis in the testes plays a role in the local defense response.


Subject(s)
Corticosterone/biosynthesis , Fasting , Testis/metabolism , Animals , Corticosterone/chemistry , Male , Rats , Rats, Sprague-Dawley , Stress, Physiological
12.
Virus Res ; 306: 198596, 2021 12.
Article in English | MEDLINE | ID: mdl-34648885

ABSTRACT

Pseudomonas aeruginosa, which causes chronic infections, has demonstrated rapid acquisition of antimicrobial resistance (AMR). Therefore, bacteriophages have received significant attention as promising antimicrobial agents; however, previous trials have reported the occurrence of phage-resistant variants. P. aeruginosa has lost large chromosomal fragments via evolutionary selection by MutL. Mutants lacking galU and hmgA, located in close proximity, exhibit phage resistance and brown color phenotype since hmgA encodes a homogentisic acid metabolic enzyme and deletion of galU results in a lack of O-antigen polysaccharide and absence of the phage receptor. In the present study, we evaluated this mechanism for controlling phage resistance in P. aeruginosa veterinary isolate Pa12. Phage-resistant Pa12 brown mutants (brmts) with galU and hmgA deletions were isolated. Whole-genome sequencing of the brmts revealed that regions 148-27 kbp upstream and 261-110 kbp downstream of galU were largely deleted from the Pa12 parental chromosome. Furthermore, all of these fluctuating deleted sequences in Pa12 brmts, tentatively designated bacteriophage-induced galU deficiency (BigD) regions, harbor multi-drug efflux system genes (mexXY). Minimum inhibitory concentration (MIC) assays demonstrated that brmts altered sensitivity to antibiotics and exhibited increased levofloxacin sensitivity compared with the Pa12 parent. Orbifloxacin and enrofloxacin also effectively suppressed growth of the Pa12 brmts, suggesting that MexXY, which mediates quinolone efflux and is located in the BigD region, might be associated with restoration of fluoroquinolone sensitivity. Our findings indicate that AMR-related genes in the BigD region could produce trade-off effects between phages and drug sensitivity and thereby contribute to a potential strategy to control and prevent phage-resistant variants in phage therapy.


Subject(s)
Bacteriophages , HMGA Proteins , Phage Therapy , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Fluoroquinolones/metabolism , Fluoroquinolones/pharmacology , HMGA Proteins/metabolism , Pseudomonas aeruginosa/genetics
13.
Viruses ; 13(10)2021 09 29.
Article in English | MEDLINE | ID: mdl-34696394

ABSTRACT

Bacteriophages are viruses that specifically infect bacteria and are classified as either virulent phages or temperate phages. Despite virulent phages being promising antimicrobial agents due to their bactericidal effects, the implementation of phage therapy depends on the availability of virulent phages against target bacteria. Notably, virulent phages of Streptococcus gordonii, which resides in the oral cavity and is an opportunistic pathogen that can cause periodontitis and endocarditis have previously never been found. We thus attempted to isolate virulent phages against S. gordonii. In the present study, we report for the first time a virulent bacteriophage against S. gordonii, ΦSG005, discovered from drainage water. ΦSG005 is composed of a short, non-contractile tail and a long head, revealing Podoviridae characteristics via electron microscopic analysis. In turbidity reduction assays, ΦSG005 showed efficient bactericidal effects on S. gordonii. Whole-genome sequencing showed that the virus has a DNA genome of 16,127 bp with 21 coding sequences. We identified no prophage-related elements such as integrase in the ΦSG005 genome, demonstrating that the virus is a virulent phage. Phylogenetic analysis indicated that ΦSG005 forms a distinct clade among the streptococcus viruses and is positioned next to streptococcus virus C1. Molecular characterization revealed the presence of an anti-CRISPR (Acr) IIA5-like protein in the ΦSG005 genome. These findings facilitate our understanding of streptococcus viruses and advance the development of phage therapy against S. gordonii infection.


Subject(s)
Genome, Viral , Phylogeny , Streptococcus Phages/genetics , Streptococcus Phages/pathogenicity , Streptococcus gordonii/virology , Clustered Regularly Interspaced Short Palindromic Repeats , Phage Therapy , Streptococcus Phages/classification , Virulence , Whole Genome Sequencing
14.
Microbiol Resour Announc ; 10(26): e0039821, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34197194

ABSTRACT

Pseudomonas aeruginosa causes various opportunistic infections in animals. Here, we report the complete genome sequence of P. aeruginosa strain Pa12, a fluoroquinolone-resistant isolate from a canine skin lesion. To expand the molecular antimicrobial characteristics of the isolate, the whole Pa12 genome was sequenced and assembled via long- and short-read platforms.

15.
Vet Res ; 52(1): 58, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33863386

ABSTRACT

Mycoplasma bovis (M. bovis) is a significant worldwide pathogen of cattle. Neutrophils have an important role in the innate immune response during infection with M. bovis. However, even though neutrophils accumulate in M. bovis infection, the interaction of M. bovis and neutrophils has not been fully elucidated. We attempted to elucidate the innate immune response of neutrophils stimulated with M. bovis and evaluate the transcriptome and functional analysis of bovine neutrophils stimulated with M. bovis. Proinflammatory cytokines, such as inducible nitric oxide (iNOS), which was the most increased gene in transcriptome analysis, were increased in quantitative polymerase chain reaction analysis of bovine neutrophils stimulated with live or heat-killed M. bovis. Nitric oxide and intracellular reactive oxygen species production of neutrophils stimulated with M. bovis was significantly increased. Neutrophils stimulated with M. bovis showed an increased ratio of nonapoptotic cell death compared to unstimulated controls. We demonstrated that neutrophil extracellular traps (NETs) formation was not recognized in neutrophils stimulated with live M. bovis. However, heat-killed M. bovis induced NETs formation. We also showed the interaction with M. bovis and bovine neutrophils regarding proinflammatory cytokine gene expression and functional expression related to NETs formation. Live and killed M. bovis induced innate immune responses in neutrophils and had the potential to induce NETs formation, but live M. bovis escaped NETs.


Subject(s)
Cattle Diseases/immunology , Extracellular Traps/metabolism , Gene Expression/immunology , Immunity, Innate , Mycoplasma Infections/veterinary , Mycoplasma bovis/physiology , Neutrophils/immunology , Animals , Cattle , Cattle Diseases/genetics , Cattle Diseases/microbiology , Extracellular Traps/microbiology , Mycoplasma Infections/genetics , Mycoplasma Infections/immunology , Mycoplasma Infections/microbiology
16.
Vet Microbiol ; 253: 108956, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33373880

ABSTRACT

Mycoplasma bovis causes chronic arthritis in cattle, accompanied by a severe inflammatory reaction of the joints. Recent studies demonstrated that M. bovis can invade bovine non-phagocytic cells, but the mechanism of M. bovis internalization in the cells remains unclear. In this study, we examined the mechanism by which M. bovis invades synovial cells, including the pathway of cell invasion. Using fluorescence and electron microscopy, multiple M. bovis were observed to adhere to and be internalized in cultured bovine synovial cells. The number of M. bovis colocalized with clathrin heavy chain (CLTC) per cell was significantly higher than the number of M. bovis colocalized with caveolin-1 (Cav-1). The internalized ratio of M. bovis in synovial cells treated with clathrin-dependent endocytosis inhibitor and small interfering RNA (siRNA) against CLTC was significantly lower than that in control cells. In contrast, the internalized ratio of M. bovis in synovial cells was unaffected by siRNA against Cav-1. These findings provide the first evidence that clathrin-dependent endocytosis is one of the major pathways by which M. bovis invades into synovial cells.


Subject(s)
Arthritis/veterinary , Clathrin/metabolism , Endocytosis , Mycoplasma bovis/physiology , Synoviocytes/microbiology , Adhesins, Bacterial , Animals , Arthritis/microbiology , Cattle , Cells, Cultured , RNA, Small Interfering
17.
Vet Immunol Immunopathol ; 232: 110166, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33348232

ABSTRACT

Mycoplasma bovis is a pathogenic bacterium in bovines that causes huge global economic losses. Numerous factors play important roles in M. bovis pathogenesis; however, the host immune response involved in M. bovis infection has not been fully elucidated. We aimed to determine the characteristics of the host immune response to Mycoplasma infection. We evaluated the responsiveness of bovine peripheral blood mononuclear cells (PBMCs) stimulated with M. bovis via microarray analysis. The transcriptional abundance of innate immune-related genes IL-36A, IL-27, IFN-γ, and IL-17 in PBMCs increased after M. bovis exposure. Upon M. bovis infection, there was increased expression of the lymphocyte activated genes basic leucine zipper transcription factor (BATF) and signaling lymphocytic activation molecule family members 1 and 7 (SLAMF 1 and SLAMF 7) in PBMCs compared with that in unstimulated cells. The study revealed that the transcriptional abundance of innate immunity genes in PBMCs increased during M. bovis infection. This induced the activation of PBMCs, giving rise to an immune response, which is followed by the development of the inflammatory response. The results from this study could be used as the basis for the development of novel vaccine candidates against M. bovis.


Subject(s)
Cattle Diseases/immunology , Leukocytes, Mononuclear/immunology , Mycoplasma Infections/veterinary , Mycoplasma bovis/immunology , Animals , Cattle , Cattle Diseases/microbiology , Female , Gene Expression Profiling/veterinary , Immunity, Innate/genetics , Microarray Analysis/veterinary , Mycoplasma Infections/immunology
19.
Microbiol Resour Announc ; 9(46)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33184163

ABSTRACT

We report the complete genome sequence of Escherichia coli strain HUE1, isolated from the urinary catheter of a female patient, showing fluoroquinolone resistance without quinolone resistance-determining region mutations. To facilitate the exploration of the molecular characteristics of HUE1, the whole genome was sequenced using long- and short-read platforms.

20.
Microbiol Immunol ; 64(11): 778-782, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32918505

ABSTRACT

In recent years, antimicrobial-resistant Pseudomonas aeruginosa strains have increased in the veterinary field. Therefore, phage therapy has received significant attention as an approach for overcoming antimicrobial resistance. In this context, we isolated and characterized four Pseudomonas bacteriophages. Phylogenetic analysis showed that the isolated phages are novel Myoviridae Pbunavirus PB1-like phages with ØR12 belonging to a different clade compared with the other three. These phages had distinct lytic activity against 22 P. aeruginosa veterinary isolates. The phage cocktail composed from the PB1-like phages clearly inhibited the occurrence of the phage-resistant variant, suggesting that these phages could be useful in phage therapy.


Subject(s)
Bacteriophages/isolation & purification , Myoviridae/isolation & purification , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/virology , Anti-Bacterial Agents , Bacteriophages/classification , DNA, Viral , Drug Resistance, Multiple, Bacterial , Genome, Viral , Host Specificity , Myoviridae/classification , Myoviridae/genetics , Phage Therapy , Phylogeny , Pseudomonas Infections/veterinary , Pseudomonas Infections/virology , Pseudomonas Phages/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...