Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Physiol ; 17(1): 2, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28100217

ABSTRACT

BACKGROUND: In preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion. Igfs interact with a suite of Igf binding proteins (Igfbps) that modulate hormone activity. In Atlantic salmon smolts, igfbp4,-5a,-5b1,-5b2,-6b1 and-6b2 transcripts are highly expressed in gill. We measured mRNA levels of branchial and hepatic igfbps during smoltification (March, April, and May), desmoltification (July) and following seawater (SW) exposure in March and May. We also characterized parallel changes in a broad suite of osmoregulatory (branchial Na+/K+-ATPase (Nka) activity, Na + /K + /2Cl - cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator 1 (cftr1) transcription) and endocrine (plasma Gh and Igf1) parameters. RESULTS: Indicative of smoltification, we observed increased branchial Nka activity, nkcc1 and cftr1 transcription in May. Branchial igfbp6b1 and -6b2 expression increased coincidentally with smoltification. Following a SW challenge in March, igfbp6b1 showed increased expression while igfbp6b2 exhibited diminished expression. igfbp5a,-5b1 and-5b2 mRNA levels did not change during smolting, but each had lower levels following a SW exposure in March. CONCLUSIONS: Salmonids express an especially large suite of igfbps. Our data suggest that dynamic expression of particular igfbps accompanies smoltification and SW challenges; thus, transcriptional control of igfbps may provide a mechanism for the local modulation of Igf activity in salmon gill.


Subject(s)
Acclimatization/physiology , Fresh Water , Gills/metabolism , Insulin-Like Growth Factor Binding Proteins/biosynthesis , Salmo salar/metabolism , Seawater , Animals , Ecosystem , Insulin-Like Growth Factor Binding Proteins/blood , Osmoregulation/physiology , Salmo salar/blood
2.
Gen Comp Endocrinol ; 233: 79-87, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27210270

ABSTRACT

The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon (Salmo salar). Fish were fasted for 3 or 10days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3days and condition factor by 10days. Plasma Gh, cortisol, and thyroxine (T4) were not altered in response to fasting, whereas Igf1 and 3,5,3'-triiodo-l-thyronine (T3) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1, -1b2, -2a, -2b1 and -2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10days of fasting. Fasting did not alter hepatic igf1 or igf2; however, muscle igf1 was diminished by 10days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na(+)/K(+)-ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism.


Subject(s)
Caloric Restriction , Food Deprivation/physiology , Insulin-Like Growth Factor Binding Proteins/metabolism , Life Cycle Stages/physiology , Liver/metabolism , Salmo salar/growth & development , Salmo salar/metabolism , Animal Migration/physiology , Animals , Caloric Restriction/veterinary , Fasting/physiology , Growth Hormone/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor II/metabolism , Insulins/metabolism , Salt Tolerance/physiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...