Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(2): 023305, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36859017

ABSTRACT

A new high field spectrometer has been built to extend the capabilities of the ß-detected nuclear magnetic resonance (ß-NMR) facility at TRIUMF. This new beamline extension allows ß-NMR spectroscopy to be performed with fields up to 200 mT parallel to a sample's surface (perpendicular to the ion beam), allowing depth-resolved studies of local electromagnetic fields with spin polarized probes at a much higher applied magnetic field than previously available in this configuration. The primary motivation and application is to allow studies of superconducting radio frequency (SRF) materials close to the critical fields of Nb metal, which is extensively used to fabricate SRF cavities. The details of the design considerations and implementation of the ultra-high vacuum (UHV) system, ion optics, and beam diagnostics are presented here. Commissioning of the beamline and spectrometer with radioactive ions are also reported here. Future capabilities and applications in other areas are also described.

2.
Angew Chem Int Ed Engl ; 61(35): e202207137, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35718746

ABSTRACT

The complexation of MgII with adenosine 5'-triphosphate (ATP) is omnipresent in biochemical energy conversion, but is difficult to interrogate directly. Here we use the spin- 1/2 ß-emitter 31 Mg to study MgII -ATP complexation in 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) solutions using ß-radiation-detected nuclear magnetic resonance (ß-NMR). We demonstrate that (nuclear) spin-polarized 31 Mg, following ion-implantation from an accelerator beamline into EMIM-Ac, binds to ATP within its radioactive lifetime before depolarizing. The evolution of the spectra with solute concentration indicates that the implanted 31 Mg initially bind to the solvent acetate anions, whereafter they undergo dynamic exchange and form either a mono- (31 Mg-ATP) or di-nuclear (31 MgMg-ATP) complex. The chemical shift of 31 Mg-ATP is observed up-field of 31 MgMg-ATP, in accord with quantum chemical calculations. These observations constitute a crucial advance towards using ß-NMR to probe chemistry and biochemistry in solution.


Subject(s)
Adenosine Triphosphate , Magnesium , Adenosine Triphosphate/chemistry , Imidazoles , Magnetic Resonance Spectroscopy/methods
3.
J Chem Phys ; 156(8): 084903, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35232192

ABSTRACT

We investigated the depth, temperature, and molecular-weight (MW) dependence of the γ-relaxation in polystyrene glasses using implanted 8Li+ and ß-detected nuclear magnetic resonance. Measurements were performed on thin films with MW ranging from 1.1 to 641 kg/mol. The temperature dependence of the average 8Li spin-lattice relaxation time (T1 avg) was measured near the free surface and in the bulk. Spin-lattice relaxation is caused by phenyl ring flips, which involve transitions between local minima over free-energy barriers with enthalpic and entropic contributions. We used transition state theory to model the temperature dependence of the γ-relaxation, and hence T1 avg. There is no clear correlation of the average entropy of activation (Δ‡S̄) and enthalpy of activation (Δ‡H̄) with MW, but there is a clear correlation between Δ‡S̄ and Δ‡H̄, i.e., entropy-enthalpy compensation. This results in the average Gibbs energy of activation, Δ‡G, being approximately independent of MW. Measurements of the temperature dependence of T1 avg as a function of depth below the free surface indicate the inherent entropic barrier, i.e., the entropy of activation corresponding to Δ‡H̄ = 0, has an exponential dependence on the distance from the free surface before reaching the bulk value. This results in Δ‡G near the free surface being lower than the bulk. Combining these observations results in a model where the average fluctuation rate of the γ-relaxation has a "double-exponential" depth dependence. This model can explain the depth dependence of 1/T1 avg in polystyrene films. The characteristic length of enhanced dynamics is ∼6 nm and approximately independent of MW near room temperature.

4.
RSC Adv ; 10(14): 8190-8197, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-35497818

ABSTRACT

We have studied a mosaic of 1T-CrSe2 single crystals using ß-detected nuclear magnetic resonance of 8Li from 4 to 300 K. We identify two broad resonances that show no evidence of quadrupolar splitting, indicating two magnetically distinct environments for the implanted ion. We observe stretched exponential spin lattice relaxation and a corresponding rate (1/T 1) that increases monotonically above 200 K, consistent with the onset of ionic diffusion. A pronounced maximum in 1/T 1 is observed at the low temperature magnetic transition near 20 K. Between these limits, 1/T 1 exhibits a broad minimum with an anomalous absence of strong features in the vicinity of structural and magnetic transitions between 150 and 200 K. Together, the results suggest 8Li+ site occupation within the van der Waals gap between CrSe2 trilayers. Possible origins of the two environments are discussed.

5.
Dalton Trans ; 47(41): 14431-14435, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30280170

ABSTRACT

NMR spectra of Mg2+ ions in ionic liquids were recorded using a highly sensitive variant of NMR spectroscopy known as ß-NMR. The ß-NMR spectra of MgCl2 in EMIM-Ac and EMIM-DCA compare favourably with conventional NMR, and exhibit linewidths of ∼3 ppm, allowing for discrimination of species with oxygen and nitrogen coordination.

6.
Soft Matter ; 14(36): 7324-7334, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-29796450

ABSTRACT

There is indirect evidence that the dynamics of a polymer near a free surface are enhanced compared with the bulk but there are few studies of how dynamics varies with depth. ß-Detected nuclear spin relaxation of implanted 8Li+ has been used to directly probe the temperature and depth dependence of the γ-relaxation mode, which is due to phenyl rings undergoing restricted rotation, in thin films of atactic deuterated polystyrene (PS-d8) and determine how the depth dependence of dynamics is affected by sample processing, such as annealing, floating on water and the inclusion of a surfactant, and by the presence of a buried interface. The activation energy for the γ-relaxation process is lower near the free surface. Annealing the PS-d8 films and then immersing in water to mimic the floating procedure used to transfer films had negligible effects on the thickness of the region near the free surface with enhanced mobility. Measurements on a bilayer film indicate enhanced phenyl ring dynamics near the buried interface compared with a single film at the same depth. PS-d8 films annealed with the surfactant sodium dodecyl sulfate (SDS) deposited on the surface show enhanced dynamics in the bulk compared with a pure PS-d8 film and a PS-d8 film where the SDS was washed away. There is less contrast between the surface and bulk in the SDS-treated sample, which could account for the elimination of the Tg confinement effect observed in films containing SDS [Chen and Torkelson, Polymer, 2016, 87, 226].

SELECTION OF CITATIONS
SEARCH DETAIL
...