Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 24(7): 12, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39028900

ABSTRACT

Perceiving verticality is crucial for accurate spatial orientation. Previous research has revealed that tilted scenes can bias verticality perception. Verticality perception bias can be represented as the sum of multiple periodic functions that play a role in the perception of visual orientation, where the specific factors affecting each periodicity remain uncertain. This study investigated the influence of the width and depth of an indoor scene on each periodic component of the bias. The participants were presented with an indoor scene showing a rectangular checkerboard room (Experiment 1), a rectangular aperture on the wall (Experiment 2), or a rectangular dotted room (Experiment 3), with various aspect ratios. The stimuli were presented with roll orientations ranging from 90° clockwise to 90° counterclockwise. The participants were asked to report their subjective visual vertical (SVV) perceptions. The contributions of 45°, 90°, and 180° periodicities to the SVV error were assessed by the weighted vector sum model. In Experiment 1, the periodic components of the SVV error increased with the aspect ratio. In Experiments 2 and 3, only the 90° component increased with the aspect ratio. These findings suggest that extended transverse surfaces may modulate the periodic components of verticality perception.


Subject(s)
Cues , Depth Perception , Orientation, Spatial , Photic Stimulation , Humans , Young Adult , Male , Female , Depth Perception/physiology , Orientation, Spatial/physiology , Photic Stimulation/methods , Adult , Space Perception/physiology , Form Perception/physiology
2.
J Vis ; 22(4): 1, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35234839

ABSTRACT

Visual orientation plays an important role in postural control, but the specific characteristics of postural response to orientation remain unknown. In this study, we investigated the relationship between postural response and the subjective visual vertical (SVV) as a function of scene orientation. We presented a virtual room including everyday objects through a head-mounted display and measured head tilt around the naso-occipital axis. The room orientation varied from 165° counterclockwise to 180° clockwise around the center of display in 15° increments. In a separate session, we also conducted a rod adjustment task to record the participant's SVV in the tilted room. We applied a weighted vector sum model to head tilt and SVV error and obtained the weight of three visual cues to orientation: frame, horizon, and polarity. We found significant contributions for all visual cues to head tilt and SVV error. For SVV error, frame cues made the largest contribution, whereas polarity contribution made the smallest. For head tilt, there was no clear difference across visual cue types, although the order of contribution was similar to the SVV. These findings suggest that multiple visual cues to orientation are involved in postural control and imply different representations of vertical orientation across postural control and perception.


Subject(s)
Orientation , Visual Perception , Cues , Humans , Orientation/physiology , Postural Balance , Space Perception/physiology , Visual Perception/physiology
3.
Front Psychol ; 11: 577305, 2020.
Article in English | MEDLINE | ID: mdl-33123058

ABSTRACT

We investigated postural responses (head displacements) and self-motion perception (vection) to radial and lateral optic flows while sitting and standing by using a head-mounted display. We found that head displacement directions varied across postures. In the standing posture, radial optic flow generally produced the opposed head displacement against the perceived vection direction, consistent with the literature; however, in the sitting posture, the optic flow generally produced the following head displacement in the vection direction. In the standing posture, responses were evident soon after the onset of the optic flow presentation but became less clear in the latter half of a trial. The results, while less clear for lateral flows, were similar for both flow types. Our findings suggest partially distinct processes underlying vection and postural control.

4.
Iperception ; 10(6): 2041669519886903, 2019.
Article in English | MEDLINE | ID: mdl-31803463

ABSTRACT

Optic flow that simulates self-motion often produces postural adjustment. Although literature has suggested that human postural control depends largely on visual inputs from the lower field in the environment, effects of the vertical location of optic flow on postural responses are not well investigated. Here, we examined whether optic flow presented in the lower visual field produces stronger responses than optic flow in the upper visual field. Either expanding or contracting optic flow was presented in upper, lower, or full visual fields through an Oculus Rift head-mounted display. Head displacement and vection strength were measured. Results showed larger head displacement under the optic flow presentation in the full visual field and the lower visual field than the upper visual field, during early period of presentation of the contracting optic flow. Vection was strongest in the full visual field and weakest in the upper visual field. Our findings of lower field superiority in head displacement and vection support the notion that ecologically relevant information has a particularly important role in human postural control and self-motion perception.

SELECTION OF CITATIONS
SEARCH DETAIL
...