Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Neuroimmunol ; 361: 577724, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34610503

ABSTRACT

Prostaglandin E2 (PGE2) plays pivotal roles in controlling microglial activation with the EP2 receptor, a PGE2 receptor subtype. Activated microglia are often reported to increase cyclooxygenase (COX)-2 expression, followed by PGE2 production, but it is unclear whether extracellular PGE2 is involved in microglial PGE2 synthesis. In the present study, we report that PGE2 increases COX-2 protein in microglia. In a culture system, PGE2 at 10-6 M for 3 h increased COX-2 and microsomal PGE synthase (mPGES)-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cytosolic PGE synthase (cPGES) in microglia. PGE2 at 10-6 M for 3 h also increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. An EP2 agonist, ONO-AE1-259-01, also increased COX-2 and mPGES-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cPGES, whereas an EP1 agonist, ONO-DI-004, an EP3 agonist, ONO-AE-248, and an EP4 agonist, ONO-AE1-329, had no effect. Similar to PGE2, ONO-AE1-259-01 increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. In addition, the effects of PGE2 were inhibited by an EP2 antagonist, PF-04418948, but not by an EP1 antagonist, ONO-8713, an EP3 antagonist, ONO-AE3-240, or an EP4 antagonist, ONO-AE3-208, at 10-6 M. On the other hand, lipopolysaccharide (LPS) increased PGE2 production, but the LPS-induced PGE2 production was not affected by ONO-8713, PF-04418948, ONO-AE3-240, or ONO-AE3-208. These results indicate that PGE2 increases COX-2 protein in microglia through the EP2 receptor supporting the idea that extracellular PGE2 has a triggering aspect for microglial activation.


Subject(s)
Cyclooxygenase 2/biosynthesis , Dinoprostone/pharmacology , Microglia/drug effects , Animals , Azetidines/pharmacology , Cells, Cultured , Cerebral Cortex/cytology , Cyclooxygenase 1/biosynthesis , Cyclooxygenase 1/genetics , Cyclooxygenase 2/genetics , Dinoprostone/analogs & derivatives , Dinoprostone/biosynthesis , Enzyme Induction/drug effects , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Methyl Ethers/pharmacology , Microglia/enzymology , Microsomes/drug effects , Microsomes/enzymology , Prostaglandin-E Synthases/biosynthesis , Prostaglandin-E Synthases/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Wistar , Receptors, Prostaglandin E, EP2 Subtype/agonists , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
3.
Bioorg Med Chem Lett ; 19(2): 442-6, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19042128

ABSTRACT

We studied synthetic modifications of N-mercaptoacylamino acid derivatives to develop a new class of leukotriene A(4) (LTA(4)) hydrolase inhibitors. S-(4-Dimethylamino)benzyl-l-cysteine derivative 2a (SA6541) showed inhibitory activity against LTA(4) hydrolase (IC(50), 270nM) and selectivity over other metallopeptidases except angiotensin-converting enzyme (ACE, IC(50), 520nM). Modification at the para-substituent of the phenyl ring of compound 2a improved LTA(4) hydrolase inhibitory activity as well as selectivity over ACE. Finally, we obtained S-(4-cyclohexyl)benzy-l-cysteine derivatives 11l and 16i as potent and selective LTA(4) hydrolase inhibitors.


Subject(s)
Cysteine/chemistry , Epoxide Hydrolases/antagonists & inhibitors , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Drug Evaluation, Preclinical , Models, Molecular , Quantitative Structure-Activity Relationship , Sulfhydryl Compounds/chemistry
4.
Bioorg Med Chem Lett ; 18(16): 4529-32, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18674901

ABSTRACT

We studied the synthetic modification of structurally similar N-mercaptoacyl-L-proline and (4R)-N-mercaptoacylthiazolidine-4-carboxylic acid to obtain potent leukotriene A(4) (LTA(4)) hydrolase inhibitors. An N-mercaptoacyl group, (2S)-3-mercapto-2-methylpropionyl group, was effective for both scaffolds. Additional introduction of a large substituent such as 4-isopropylbenzylthio (3f), 4-tert-butylbenzylthio (3l) or 4-cyclohexylbenzylthio group (3m) with (S)-configuration at the C(4) position of proline yielded much more potent LTA(4) hydrolase inhibitors (IC(50); 52, 31, and 34 nM, respectively) than captopril (IC(50); 630,000 nM).


Subject(s)
Carboxylic Acids/chemical synthesis , Epoxide Hydrolases/antagonists & inhibitors , Proline/analogs & derivatives , Proline/chemical synthesis , Sulfhydryl Compounds/pharmacology , Thiazolidines/pharmacology , Animals , Carboxylic Acids/chemistry , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Drug Design , Humans , Inhibitory Concentration 50 , Leukotriene A4/metabolism , Models, Chemical , Proline/chemistry , Proline/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL