Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 14(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35890230

ABSTRACT

The bone morphogenetic protein-7 (BMP7) is capable of inhibiting TGF-ß/Smad3 signaling, which subsequently results in protecting the kidney from renal fibrosis, but its lower blood retention and osteogenic activity are bottlenecks for its clinical application. We report herein on the fusion of carbohydrate-deficient human BMP7 and human serum albumin (HSA-BMP7) using albumin fusion technology and site-directed mutagenesis. When using mouse myoblast cells, no osteogenesis was observed in the glycosylated BMP7 derived from Chinese hamster ovary cells in the case of unglycosylated BMP7 derived from Escherichia coli and HSA-BMP7. On the contrary, the specific activity for the Smad1/5/8 phosphorylation of HSA-BMP7 was about 25~50-times lower than that for the glycosylated BMP7, but the phosphorylation activity of the HSA-BMP7 was retained. A pharmacokinetic profile showed that the plasma half-life of HSA-BMP7 was similar to that for HSA and was nearly 10 times longer than that of BMP7. In unilateral ureteral obstruction mice, weekly dosing of HSA-BMP7 significantly attenuated renal fibrosis, but the individual components, i.e., HSA or BMP7, did not. HSA-BMP7 also attenuated a cisplatin-induced acute kidney dysfunction model. The findings reported herein indicate that HSA-BMP7 has the potential for use in clinical applications for the treatment of renal injuries.

2.
Mol Pharm ; 19(3): 798-804, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35179021

ABSTRACT

In human plasma, the main agent of hydrolysis of the ester-type prodrug of levodopa, designated ONO-2160, is alpha-1-acid glycoprotein (AGP), which is a mixture of the F1*S and A variants at molar ratios of 3:1 to 2:1. In this study, the mechanism of AGP esterase-like activity was investigated by evaluating the contribution of the F1*S and A variants to ONO-2160 hydrolysis and identifying the AGP hydrolase active site. We found that although both variants hydrolyzed ONO-2160, their hydrolase activities were different. The intrinsic plasma clearance of the F1*S variant (0.441 mL/h/mg protein) was approximately 30 times higher than that of the A variant (0.0148 mL/h/mg protein), indicating that the F1*S variant contributed the most to AGP esterase-like activity. To identify the hydrolase active site of AGP, we performed inhibition studies of ONO-2160 hydrolysis using 12 AGP-binding drugs with various ligand-binding constants and binding selectivities to the two AGP variants. Inhibition of activity was positively correlated with the constant of ligand binding to the F1*S variant. In addition, compounds with high affinity to the F1*S variant inhibited ONO-2160 hydrolysis the most. Together, our data indicate that ONO-2160 is predominantly hydrolyzed by the F1*S variant at its ligand-binding site.


Subject(s)
Hydrolases , Orosomucoid , Esterases/metabolism , Humans , Ligands , Orosomucoid/genetics , Orosomucoid/metabolism , Protein Binding
3.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070521

ABSTRACT

An effective strategy is highly desirable for preventing acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Thioredoxin-1 (Trx), a redox-active protein that has anti-oxidative and anti-inflammatory properties, would be a candidate for this but its short half-life limits its clinical application. In this study, we examined the renoprotective effect of long-acting Trx that is comprised of human albumin and Trx (HSA-Trx) against AKI to CKD transition. AKI to CKD mice were created by renal ischemia-reperfusion (IR). From day 1 to day 14 after renal IR, the recovery of renal function was accelerated by HSA-Trx administration. On day 14, HSA-Trx reduced renal fibrosis compared with PBS treatment. At the early phase of fibrogenesis (day 7), HSA-Trx treatment suppressed renal oxidative stress, pro-inflammatory cytokine production and macrophage infiltration, thus ameliorating tubular injury and fibrosis. In addition, HSA-Trx treatment inhibited G2/M cell cycle arrest and apoptosis in renal tubular cells. While renal Trx protein levels were decreased after renal IR, the levels were recovered by HSA-Trx treatment. Together, HSA-Trx has potential for use in the treatment of AKI to CKD transition via its effects of modulating oxidative stress and inflammation.


Subject(s)
Acute Kidney Injury/drug therapy , Apoptosis/drug effects , Oxidative Stress/drug effects , Renal Insufficiency, Chronic/metabolism , Thioredoxins/administration & dosage , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , G2 Phase Cell Cycle Checkpoints/drug effects , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Renal Insufficiency, Chronic/pathology , Thioredoxins/pharmacology
4.
Sci Rep ; 11(1): 7953, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846468

ABSTRACT

The molecular mechanism for acute kidney injury (AKI) and its progression to chronic kidney disease (CKD) continues to be unclear. In this study, we investigated the pathophysiological role of the acute phase protein α1-acid glycoprotein (AGP) in AKI and its progression to CKD using AGP KO mice. Plasma AGP levels in WT mice were increased by about 3.5-fold on day 1-2 after renal ischemia-reperfusion (IR), and these values then gradually decreased to the level before renal IR on day 7-14. On day 1 after renal IR, the AGP KO showed higher renal dysfunction, tubular injury and renal inflammation as compared with WT. On day 14, renal function, tubular injury and renal inflammation in WT had recovered, but the recovery was delayed, and renal fibrosis continued to progress in AGP KO. These results obtained from AGP KO were rescued by the administration of human-derived AGP (hAGP) simultaneously with renal IR. In vitro experiments using RAW264.7 cells showed hAGP treatment suppressed the LPS-induced macrophage inflammatory response. These data suggest that endogenously induced AGP in early renal IR functions as a renoprotective molecule via its anti-inflammatory action. Thus, AGP represents a potential target molecule for therapeutic development in AKI and its progression CKD.


Subject(s)
Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Anti-Inflammatory Agents/therapeutic use , Disease Progression , Renal Insufficiency, Chronic/drug therapy , alpha-Macroglobulins/therapeutic use , Acute Kidney Injury/blood , Acute Kidney Injury/complications , Animals , Anti-Inflammatory Agents/pharmacology , Humans , Inflammation/blood , Inflammation/complications , Inflammation/drug therapy , Kidney/drug effects , Kidney/pathology , Kidney/physiopathology , Kidney Function Tests , Lipopolysaccharides , Macrophages/drug effects , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/pathology , Reperfusion Injury/blood , alpha-Macroglobulins/administration & dosage , alpha-Macroglobulins/pharmacology
5.
Sci Rep ; 10(1): 20635, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244034

ABSTRACT

The mortality of patients with acute kidney injury (AKI) remains high due to AKI associated-lung injury. An effective strategy for preventing both AKI and AKI-associated lung injury is urgently needed. Thioredoxin-1 (Trx) is a redox-active protein that possesses anti-oxidative, anti-apoptotic and anti-inflammatory properties including modulation of macrophage migration inhibitory factor (MIF), but its short half-life limits its clinical application. Therefore, we examined the preventive effect of a long-acting Trx, which is a fusion protein of albumin and Trx (HSA-Trx), against AKI and AKI-associated lung injury. Recombinant HSA-Trx was expressed using a Pichia expression system. AKI-induced lung injury mice were generated by bilateral renal ischemia reperfusion injury (IRI). HSA-Trx administration attenuated renal IRI and its-associated lung injury. Both renal and pulmonary oxidative stress were suppressed by HSA-Trx. Moreover, HSA-Trx inhibited elevations of plasma IL-6 and TNF-α level, and suppressed IL-6-CXCL1/2-mediated neutrophil infiltration into lung and TNF-α-mediated pulmonary apoptosis. Additionally, HSA-Trx suppressed renal IRI-induced MIF expression in kidney and lung. Administration of HSA-Trx resulted in a significant increase in the survival rate of renal IRI mice. Collectively, HSA-Trx could have therapeutic utility in preventing both AKI and AKI-associated lung injury as a consequence of its systemic and sustained multiple biological action.


Subject(s)
Acute Kidney Injury/prevention & control , Delayed-Action Preparations/pharmacology , Reperfusion Injury/drug therapy , Thioredoxins/pharmacology , Acute Kidney Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Apoptosis/drug effects , Disease Models, Animal , Interleukin-6/metabolism , Kidney/drug effects , Kidney/metabolism , Lung/drug effects , Lung/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Serum Albumin/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
Sci Rep ; 10(1): 11424, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651445

ABSTRACT

Renal fibrosis is a major factor in the progression of chronic kidney disease and the final common pathway of kidney injury. Therefore, the effective therapies against renal fibrosis are urgently needed. The objective of this study was to investigate the effect of Am80, a synthetic retinoic acid receptor (RAR) agonist, in the treatment of renal interstitial fibrosis using unilateral ureteral obstruction (UUO) mice. The findings indicate that Am80 treatment suppressed renal fibrosis and inflammation to the same degree as the naturally-occuring retinoic acid, all-trans retinoic acid (atRA). But the adverse effect of body weight loss in Am80-treated mice was lower compared to the atRA treatment. The hepatic mRNA levels of alpha-1-acid glycoprotein (AGP), a downstream molecule of RAR agonist, was increased following administration of Am80 to healthy mice. In addition, increased AGP mRNA expression was also observed in HepG2 cells and THP-1-derived macrophages that had been treated with Am80. AGP-knockout mice exacerbated renal fibrosis, inflammation and macrophage infiltration in UUO mice, indicating endogenous AGP played an anti-fibrotic and anti-inflammatory role during the development of renal fibrosis. We also found that no anti-fibrotic effect of Am80 was observed in UUO-treated AGP-knockout mice whereas atRA treatment tended to show a partial anti-fibrotic effect. These collective findings suggest that Am80 protects against renal fibrosis via being involved in AGP function.


Subject(s)
Benzoates/pharmacology , Kidney/drug effects , Orosomucoid/metabolism , Receptors, Retinoic Acid/agonists , Tetrahydronaphthalenes/pharmacology , Animals , Fibrosis/drug therapy , Hep G2 Cells , Humans , Inflammation , Kidney/pathology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/metabolism , Receptors, Retinoic Acid/metabolism , THP-1 Cells
7.
Kidney360 ; 1(5): 343-353, 2020 05 28.
Article in English | MEDLINE | ID: mdl-35369369

ABSTRACT

Background: Recent clinical studies have shown that proteinuria is a critical factor in the progression of CKD and onset of cardiovascular disease. Inflammation and infiltration of macrophages into renal tissue are implicated as causes of proteinuria. α1-Acid glycoprotein (AGP), an acute-phase plasma protein, is leaked into the urine in patients with proteinuria. However, the relationship between urinary leakage of AGP, renal inflammation, and proteinuria remains unclear. Methods: Human AGP (hAGP) was exogenously administrated for 5 consecutive days to adriamycin-induced nephropathy model mice. Results: Adriamycin treatment increased urinary AGP, accompanied by decreased plasma AGP in mice. Exogenous hAGP administration to adriamycin-treated mice suppressed proteinuria, renal histologic injury, and inflammation. hAGP administration increased renal CD163 expression, a marker of anti-inflammatory macrophages. Similar changes were observed in PMA-differentiated THP-1 cells treated with hAGP. Even in the presence of LPS, hAGP treatment increased CD163/IL-10 expression in differentiated THP-1 cells. Conclusions: AGP alleviates proteinuria and renal injury in mice with proteinuric kidney disease via induction of CD163-expressing macrophages with anti-inflammatory function. The results demonstrate that endogenous AGP could work to protect against glomerular disease. Thus, AGP supplementation could be a possible new therapeutic intervention for patients with glomerular disease.


Subject(s)
Kidney Diseases , Orosomucoid , Animals , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Doxorubicin/adverse effects , Humans , Kidney Diseases/chemically induced , Macrophages/metabolism , Mice , Orosomucoid/metabolism , Receptors, Cell Surface
8.
Sci Rep ; 8(1): 17329, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478350

ABSTRACT

Renal fibrosis, the characteristic feature of progressive chronic kidney disease, is associated with unremitting renal inflammation. Although it is reported that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, elicits an anti-renal fibrotic effect, its molecular mechanism is still unknown. In this study, renal fibrosis and inflammation observed in the kidney of unilateral ureteral obstruction (UUO) mice were reduced by the treatment of 1,25(OH)2D3. The plasma protein level of alpha-1-acid glycoprotein (AGP), a downstream molecule of 1,25(OH)2D3, was increased following administration of 1,25(OH)2D3. Additionally, increased mRNA expression of ORM1, an AGP gene, was observed in HepG2 cells and THP-1-derived macrophages that treated with 1,25(OH)2D3. To investigate the involvement of AGP, exogenous AGP was administered to UUO mice, resulting in attenuated renal fibrosis and inflammation. We also found the mRNA expression of CD163, a monocyte/macrophage marker with anti-inflammatory potential, was increased in THP-1-derived macrophages under stimulus from 1,25(OH)2D3 or AGP. Moreover, AGP prevented lipopolysaccharide-induced macrophage activation. Thus, AGP could be a key molecule in the protective effect of 1,25(OH)2D3 against renal fibrosis. Taken together, AGP may replace vitamin D to function as an important immune regulator, offering a novel therapeutic strategy for renal inflammation and fibrosis.


Subject(s)
Kidney Diseases/pathology , Kidney Diseases/prevention & control , Orosomucoid/metabolism , Vitamin D/analogs & derivatives , Animals , Disease Models, Animal , Fibrosis , Hep G2 Cells , Humans , Kidney Diseases/etiology , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred ICR , Orosomucoid/genetics , Ureteral Obstruction/complications , Vitamin D/pharmacokinetics , Vitamin D/pharmacology
9.
Biochem Pharmacol ; 145: 192-201, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28843775

ABSTRACT

Chronic kidney disease (CKD), which affects, not only renal clearance, but also non-renal clearance, is accompanied by a decline in renal function. Although it has been suggested that humoral factors, such as uremic toxins that accumulate in the body under CKD conditions, could be involved in the changes associated with non-renal drug clearance, the overall process is not completely understood. In this study, we report on the role of parathyroid hormone (PTH), a middle molecule uremic toxin, on the expression of drug metabolizing or transporting proteins using rats with secondary hyperparathyroidism (SHPT) as models. In SHPT rats, hepatic and intestinal CYP3A expression was suppressed, but the changes were recovered by the administration of the calcimimetic cinacalcet, a PTH suppressor. Under the same experimental conditions, a pharmacokinetic study using orally administered midazolam, a substrate for CYP3A, showed that the AUC was increased by 5 times in SHPT rats, but that was partially recovered by a cinacalcet treatment. This was directly tested in rat primary hepatocytes and intestinal Caco-2 cells where the expression of the CYP3A protein was down-regulated by PTH (1-34). In Caco-2 cells, PTH (1-34) down-regulated the expression of CYP3A mRNA, but an inactive PTH derivative (13-34) had no effect. 8-Bromo-cyclic adenosine monophosphate, a membrane-permeable cAMP analog, reduced mRNA expression of CYP3A whereas the inhibitors of PI3K, NF-κB, PKC and PKA reversed the PTH-induced CYP3A down-regulation. These results suggest that PTH down-regulates CYP3A through multiple signaling pathways, including the PI3K/PKC/PKA/NF-κB pathway after the elevation of intracellular cAMP, and the effect of PTH can be prevented by cinacalcet treatment.


Subject(s)
Cyclic AMP/metabolism , Cytochrome P-450 CYP3A/metabolism , Down-Regulation/physiology , Parathyroid Hormone/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/metabolism , Animals , Caco-2 Cells , Cinacalcet/toxicity , Cyclic AMP/genetics , Cytochrome P-450 CYP3A/genetics , GABA Modulators/pharmacokinetics , Gene Expression Regulation, Enzymologic/physiology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hyperparathyroidism/chemically induced , Hyperparathyroidism/metabolism , Male , Midazolam/pharmacokinetics , NF-kappa B/genetics , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/genetics , Protein Kinase C/genetics , Random Allocation , Rats , Renal Insufficiency, Chronic/metabolism , Signal Transduction
10.
J Cachexia Sarcopenia Muscle ; 8(5): 735-747, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28608457

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) patients experience skeletal muscle wasting and decreased exercise endurance. Our previous study demonstrated that indoxyl sulfate (IS), a uremic toxin, accelerates skeletal muscle atrophy. The purpose of this study was to examine the issue of whether IS causes mitochondria dysfunction and IS-targeted intervention using AST-120, which inhibits IS accumulation, or mitochondria-targeted intervention using L-carnitine or teneligliptin, a dipeptidyl peptidase-4 inhibitor which retains mitochondria function and alleviates skeletal muscle atrophy and muscle endurance in chronic kidney disease mice. METHODS: The in vitro effect of IS on mitochondrial status was evaluated using mouse myofibroblast cells (C2C12 cell). The mice were divided into sham or 5/6-nephrectomized (CKD) mice group. Chronic kidney disease mice were also randomly assigned to non-treatment group and AST-120, L-carnitine, or teneligliptin treatment groups. RESULTS: In C2C12 cells, IS induced mitochondrial dysfunction by decreasing the expression of PGC-1α and inducing autophagy in addition to decreasing mitochondrial membrane potential. Co-incubation with an anti-oxidant, ascorbic acid, L-carnitine, or teneligliptine restored the values to their original state. In CKD mice, the body and skeletal muscle weights were decreased compared with sham mice. Compared with sham mice, the expression of interleukin-6 and atrophy-related factors such as myostatin and atrogin-1 was increased in the skeletal muscle of CKD mice, whereas muscular Akt phosphorylation was decreased. In addition, a reduced exercise capacity was observed for the CKD mice, which was accompanied by a decreased expression of muscular PCG-1α and increased muscular autophagy, as reflected by decreased mitochondria-rich type I fibres. An AST-120 treatment significantly restored these changes including skeletal muscle weight observed in CKD mice to the sham levels accompanied by a reduction in IS levels. An L-carnitine or teneligliptin treatment also restored them to the sham levels without changing IS level. CONCLUSIONS: Our results indicate that IS induces mitochondrial dysfunction in skeletal muscle cells and provides a potential therapeutic strategy such as IS-targeted and mitochondria-targeted interventions for treating CKD-induced muscle atrophy and decreased exercise endurance.


Subject(s)
Indican/therapeutic use , Mitochondria/drug effects , Mitochondria/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism , Sarcopenia/drug therapy , Sarcopenia/etiology , Animals , Antioxidants/metabolism , Biomarkers , Cell Line , Chromatography, High Pressure Liquid , Creatinine/blood , Creatinine/urine , Cytokines/metabolism , Disease Models, Animal , Humans , Indican/pharmacology , Inflammation Mediators/metabolism , Male , Mice , Myoblasts/drug effects , Myoblasts/metabolism , Nitrogen/blood , Nitrogen/urine , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Sarcopenia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...