Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Appl Crystallogr ; 57(Pt 1): 215-219, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38322715

ABSTRACT

An anomalous ultra-small-angle X-ray scattering (AUSAXS) system has been constructed at BL28XU at SPring-8 for time-resolved AUSAXS experiments. The path length was extended to 9.1 m and a minimum of q = 0.0069 nm-1 was attained. Scattering profiles at 0.0069 to 0.3 nm-1 were successfully obtained at 17 different X-ray energies in 30 s using the BL28XU optical setup, which enables adjustment of the energy of the incident X-rays quickly without the beam position drifting. Time-resolved measurements were conducted to investigate changes in the structure of zinc compounds in poly(styrene-ran-butadiene) rubber during vulcanization. A change in energy dependence of the scattered intensity with time was found during vulcanization, suggesting the transformation of zinc in the reaction.

2.
Chem Sci ; 15(7): 2425-2432, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362422

ABSTRACT

Nanocrystal (NC) superlattices (SLs) have been widely studied as a new class of functional mesoscopic materials with collective physical properties. The arrangement of NCs in SLs governs the collective properties of SLs, and thus investigations of phenomena that can change the assembly of NC constituents are important. In this study, we investigated the dynamic evolution of NC arrangements in three-dimensional (3D) SLs, specifically the morphological transformation of NC constituents during the direct liquid-phase synthesis of 3D NC SLs. Electron microscopy and synchrotron-based in situ small angle X-ray scattering experiments revealed that the transformation of spherical Cu2S NCs in face-centred-cubic 3D NC SLs into anisotropic disk-shaped NCs collapsed the original ordered close-packed structure. The random crystallographic orientation of spherical Cu2S NCs in starting SLs also contributed to the complete disordering of the NC array via random-direction anisotropic growth of NCs. This work demonstrates that an understanding of the anisotropic growth kinetics of NCs in the post-synthesis modulation of NC SLs is important for tuning NC array structures.

3.
ACS Nano ; 18(4): 3438-3446, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38223995

ABSTRACT

Conductive elastomers are promising for a wide range of applications in many fields due to their unique mechanical and electrical properties, and an understanding of the conductive mechanisms of such materials under deformation is crucial. However, revealing the microscopic conduction mechanism of conductive elastomers is a challenge. In this study, we developed a method that combines in situ deformation nanomechanical atomic force microscopy (AFM) and conductive AFM to successfully and simultaneously characterize the microscopic deformation and microscopic electrical conductivity of nanofiller composite conductive elastomers. With this approach, we visualized the conductive network structure of carbon black and carbon nanotube composite conductive elastomers at the nanoscale, tracked their microscopic response under different compressive strains, and revealed the correlation between microscopic and macroscopic electrical properties. This technique is important for understanding the conductive mechanism of conductive elastomers and improving the design of conductive elastomers.

4.
Langmuir ; 36(38): 11284-11291, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32864974

ABSTRACT

Atomic force microscopy (AFM)-based nanoindentation technique has been widely used to investigate the mechanical properties of compliant specimens. When a sharp probe is indented into a soft and adhesive specimen, not only the rounded end of the probe but also the pyramidal base may be in contact. However, even in such a case, a contact model that assumes a paraboloidal tip geometry (the Hertz model or one of its expansions) is mainly employed to derive the mechanical properties; the error on the mechanical properties induced by the inaccurate tip geometry assumption has not been systematically clarified. Therefore, the focus of this work was put on quantifying this error with the assumption that the actual contact occurs between a hyperboloidal indenter and an elastic and adhesive sample surface. We demonstrated that the cone-paraboloid transition of the indentation curve is governed by a single parameter, A̅ = [4RE/3πw(1 - ν2)]1/3cotα, where E and ν are Young's modulus and Poisson's ratio of the specimen, respectively, R and α are the curvature radius and half-angle of the indenter, respectively, and w is the work of adhesion. Employing the general two-point method, we quantified the errors on elasticity and surface energy caused by the assumption of the paraboloidal and conical Johnson-Kendall-Roberts (JKR) models as functions of A̅ and the normalized load. AFM force measurements with cantilevers of different radii supported this A̅ dependency. These results showed unsuitable geometry assumption can give a large error, which is generally more serious than those caused by inappropriate choice of the adhesive interaction from the JKR and DMT (Derjaguin-Muller-Toporov). It can be said that the conical model gives a good approximation to a hyperboloidal contact when A̅<1 and so does the paraboloidal model when A̅>4. A̅ is expected to be an important index that validates the paraboloidal and conical approximation in a soft and adhesive contact.

5.
Phys Rev Lett ; 124(11): 118004, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242701

ABSTRACT

We experimentally studied the shear effect on dynamical heterogeneity near glass transition temperature. X-ray photon correlation spectroscopy was utilized to study the dynamics of polyvinyl acetate with tracer particles near its glass transition temperature, to determine the local shear rate from the anisotropic behavior of the time autocorrelation function and to calculate the dynamical heterogeneity using higher-order correlation function. The obtained results show a decrease in the dynamical heterogeneity and faster dynamics with increasing shear rate. This is the first experimental result that proved the predictions of previous molecular dynamics simulations.

6.
Soft Matter ; 16(9): 2363-2370, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32057064

ABSTRACT

Inorganic/organic double network (DN) ion gels, which are composed of an inorganic silica particle network, an organic poly(N,N-dimethylacrylamide) (PDMAAm) network, and a large amount of ionic liquid, showed excellent mechanical strength of over 25 MPa compression fracture stress at an 80 wt% ionic liquid content. The excellent mechanical strength of these inorganic/organic DN ion gels was attributed to the energy dissipation of the inorganic/organic DN structure. It has been considered that the energy dissipation in inorganic/organic DN ion gels is caused by the internal fracture of the silica particle network, which is preferentially fractured by deformation. However, no studies aiming to investigate the internal fracture of the silica particle network in inorganic/organic DN ion gels have been conducted by direct approaches. In this study, the internal fracture of the silica particle network in the inorganic/organic DN ion gel was directly evaluated by a small angle X-ray scattering (SAXS) technique. The synchrotron SAXS measurements conducted under a uniaxial loading-unloading process demonstrated that the aggregation size of the silica particle network irreversibly decreased with uniaxial stretch. Based on these results, it was clarified that the energy dissipation of the inorganic/organic DN ion gels was attributed to the internal fracture of the silica particle network.

7.
Soft Matter ; 15(16): 3315-3322, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30810584

ABSTRACT

Biominerals such as bones and teeth have elaborate nanostructures composed of aligned anisotropic hydroxyapatite (HAp) nanocrystals, which results in excellent mechanical properties. Construction of such ordered structures of HAp nanocrystals in synthetic materials is challenging. Recently, we reported that HAp-nanorod-based colloidal liquid crystals could be obtained. In the present study, the static structure and dynamics of liquid-crystalline (LC) colloidal dispersions of HAp nanorods are investigated by using small-angle X-ray scattering (SAXS) and X-ray photon correlation spectroscopy (XPCS). The SAXS results reveal that the interparticle distance decreases with increasing HAp concentration, φHAp, and the decrease of the interparticle distance for the short-axis direction is significantly smaller in the LC phase than the interparticle distance in the isotropic phase. In the dynamical studies of the LC phase using XPCS, we observe the diffusive motion of the HAp colloids, with the diffusion coefficient being dependent on the wave number. The diffusive motion slows down with increasing φHAp. We observe anisotropic dynamics after long-term storage (160 days after sealing), whereas only isotropic dynamics are observed in the initial XPCS measurements after short-term storage (14 days after sealing). Moreover, we have found that the dynamics slows down with increasing storage time.

8.
Microscopy (Oxf) ; 63(3): 193-208, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24771870

ABSTRACT

We review nano-palpation atomic force microscopy, which offers quantitative mechanical property mapping especially for soft materials. The method measures force-deformation curves on the surfaces of soft materials. The emphasis is placed on how both Hertzian and Derjaguin-Muller-Toporov contact mechanics fail to reproduce the experimental curves and, alternatively, how the Johnson-Kendall-Roberts model does. We also describe the force-volume technique for obtaining a two-dimensional map of mechanical properties, such as the elastic modulus and adhesive energy, based on the above-mentioned analysis. Finally, we conclude with several counterpart measurements, which describe the viscoelastic nature of soft materials, and give examples, including vulcanized isoprene rubber and the current status of ISO standardization.

9.
J Cosmet Sci ; 64(4): 261-71, 2013.
Article in English | MEDLINE | ID: mdl-23931089

ABSTRACT

Individual hairs can be inherently curly; however, bleach treatment can cause damaged hairs to acquire a curl, a phenomenon we term acquired unintentional unruly hair. Because there have been no reports concerning acquired unintentional unruly hair, the influence of bleach treatment with alkaline peroxide that produce this phenomenon was investigated. First, it was validated that the radius of curvature in many curly hairs is reduced upon bleach treatment. Next, the influence of bleach treatment on the mechanical properties of inner components was studied by the force curve method using atomic force microscopy. This measurement revealed four types of macrofibrils-on the orthocortex- or the paracortex-like structure, and on the concave or the convex side-have different mechanical properties. Macrofibrils on the orthocortex-like structure on the convex side were especially influenced by alkaline peroxide treatment, and may be particularly important to acquired unintentional unruly hair.


Subject(s)
Hair Preparations/chemistry , Hair/chemistry , Peroxides/chemistry , Humans
10.
Biomacromolecules ; 14(4): 1208-13, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23510479

ABSTRACT

In this report, we show the preparation of honeycomb scaffolds for cell culturing by using "breath figure" method, and we found that their mechanical and topographical properties strongly affect the adhesion of fibroblasts. By photo-cross-linking of the poly(1,2-butadiene), the hardness of the honeycomb scaffold can be successfully controlled without any surface chemical changes, and detail modulus values of scaffolds were measured by atomic force microscopy. We found that only small numbers of the cells adhered on the softer honeycomb scaffolds, which has even higher modulus value than conventional gels, comparing with flat films and a hard honeycomb scaffold. These results indicate that the elastomeric honeycomb substrates are useful for evaluating the effect of the mechanical signal-derived geometry on the transduction system of cells.


Subject(s)
Biocompatible Materials , Cell Culture Techniques , Cell Proliferation , Tissue Scaffolds , 3T3 Cells , Animals , Butadienes/chemistry , Cell Adhesion , Cell Line , Elasticity , Fibroblasts/cytology , Fibronectins/analysis , Fibronectins/metabolism , Hardness , Mice , Polymers/chemistry , Polymers/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...