Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Therm Biol ; 88: 102521, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32125997

ABSTRACT

Globally temperature of marine environments is on the rise and temperature plays an important role in the life-history of reptiles. In this study, we examined the relationship between sea surface temperature and average date of hatching for American crocodiles (Crocodylus acutus) over a 37-year period at two nesting sites, Everglades National Park and Florida Power and Light Turkey Point Power Plant site in southern Florida. Our results indicate that hatch dates are shifting 1.5 days earlier every two years and at half that rate for the Turkey Point site, and with every 1 °C degree increase in temperature, hatching occurs about 10 days earlier in the Everglades and 6 days earlier at Turkey Point. Our results on shifting hatch dates for American crocodiles provide further details about the impacts of temperature change on crocodile life history and suggest that increased temperature may affect their phenology.


Subject(s)
Alligators and Crocodiles/physiology , Nesting Behavior , Temperature , Animals , Florida , Reproduction
2.
PLoS One ; 14(8): e0220372, 2019.
Article in English | MEDLINE | ID: mdl-31390354

ABSTRACT

The relationship between dive behavior and oceanographic conditions is not well understood for marine predators, especially sea turtles. We tagged loggerhead turtles (Caretta caretta) with satellite-linked depth loggers in the Gulf of Mexico, where there is a minimal amount of dive data for this species. We tested for associations between four measurements of dive behavior (total daily dive frequency, frequency of dives to the bottom, frequency of long dives and time-at-depth) and both oceanographic conditions (sea surface temperature [SST], net primary productivity [NPP]) and behavioral mode (inter-nesting, migration, or foraging). From 2011-2013 we obtained 26 tracks from 25 adult female loggerheads tagged after nesting in the Gulf of Mexico. All turtles remained in the Gulf of Mexico and spent about 10% of their time at the surface (10% during inter-nesting, 14% during migration, 9% during foraging). Mean total dive frequency was 41.9 times per day. Most dives were ≤ 25 m and between 30-40 min. During inter-nesting and foraging, turtles dived to the bottom 95% of days. SST was an important explanatory variable for all dive patterns; higher SST was associated with more dives per day, more long dives and more dives to the seafloor. Increases in NPP were associated with more long dives and more dives to the bottom, while lower NPP resulted in an increased frequency of overall diving. Longer dives occurred more frequently during migration and a higher proportion of dives reached the seafloor during foraging when SST and NPP were higher. Our study stresses the importance of the interplay between SST and foraging resources for influencing dive behavior.


Subject(s)
Behavior, Animal , Diving , Temperature , Turtles , Animal Migration , Animals , Feeding Behavior , Female , Gulf of Mexico , Nesting Behavior , Time Factors
3.
Ecol Evol ; 8(24): 12656-12669, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619571

ABSTRACT

Animals co-occurring in a region (sympatry) may use the same habitat (syntopy) within that region. A central aim in ecology is determining what factors drive species distributions (i.e., abiotic conditions, dispersal limitations, and/or biotic interactions). Assessing the degree of biotic interactions can be difficult for species with wide ranges at sea. This study investigated the spatial ecology of two sea turtle species that forage on benthic invertebrates in neritic GoM waters: Kemp's ridleys (Lepidochelys kempii) and loggerheads (Caretta caretta). We used satellite tracking and modeled behavioral modes, then calculated individual home ranges, compared foraging areas, and determined extent of co-occurrence. Using six environmental variables and principal component analysis, we assessed similarity of chosen foraging sites. We predicted foraging location (eco-region) based on species, nesting site, and turtle size. For 127 turtles (64 Kemp's ridleys, 63 loggerheads) tracked from 1989 to 2013, foraging home ranges were nine to ten times larger for Kemp's ridleys than for loggerheads. Species intersected off all U.S. coasts and the Yucatán Peninsula, but co-occurrence areas were small compared to species' distributions. Kemp's ridley foraging home ranges were concentrated in the northern GoM, whereas those for loggerheads were concentrated in the eastern GoM. The two species were different in all habitat variables compared (latitude, longitude, distance to shore, net primary production, mean sea surface temperature, and bathymetry). Nesting site was the single dominant variable that dictated foraging ecoregion. Although Kemp's ridleys and loggerheads may compete for resources, the separation in foraging areas, significant differences in environmental conditions, and importance of nesting location on ecoregion selection (i.e., dispersal ability) indicate that adult females of these species do not interact greatly during foraging and that dispersal and environmental factors more strongly determine their distributions. These species show sympatry in this region but evidence for syntopy was rare.

4.
PLoS One ; 12(3): e0174248, 2017.
Article in English | MEDLINE | ID: mdl-28319178

ABSTRACT

Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM) were used to define inter-nesting habitat of endangered Kemp's ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60); Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11); and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11). These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp's ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it.


Subject(s)
Animal Migration , Ecosystem , Nesting Behavior , Turtles , Animals , Female , Gulf of Mexico , Homing Behavior , Mexico , Motor Activity , Telemetry , Texas
5.
Ecol Appl ; 26(7): 2145-2155, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27755731

ABSTRACT

Assessments of large-scale disasters, such as the Deepwater Horizon oil spill, are problematic because while measurements of post-disturbance conditions are common, measurements of pre-disturbance baselines are only rarely available. Without adequate observations of pre-disaster organismal and environmental conditions, it is impossible to assess the impact of such catastrophes on animal populations and ecological communities. Here, we use long-term biological tissue records to provide pre-disaster data for a vulnerable marine organism. Keratin samples from the carapace of loggerhead sea turtles record the foraging history for up to 18 years, allowing us to evaluate the effect of the oil spill on sea turtle foraging patterns. Samples were collected from 76 satellite-tracked adult loggerheads in 2011 and 2012, approximately one to two years after the spill. Of the 10 individuals that foraged in areas exposed to surface oil, none demonstrated significant changes in foraging patterns post spill. The observed long-term fidelity to foraging sites indicates that loggerheads in the northern Gulf of Mexico likely remained in established foraging sites, regardless of the introduction of oil and chemical dispersants. More research is needed to address potential long-term health consequences to turtles in this region. Mobile marine organisms present challenges for researchers to monitor effects of environmental disasters, both spatially and temporally. We demonstrate that biological tissues can reveal long-term histories of animal behavior and provide critical pre-disaster baselines following an anthropogenic disturbance or natural disaster.


Subject(s)
Animal Distribution , Environmental Biomarkers , Petroleum Pollution , Turtles/physiology , Animals , Carbon Isotopes , Female , Gulf of Mexico , Nitrogen Isotopes , Skin/chemistry , Skin/pathology
6.
Ecol Evol ; 6(14): 4823-35, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27547316

ABSTRACT

Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0-73.0%) and dropped to 26.0% (95% CI: 11.4-39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef environment.

7.
Environ Entomol ; 44(3): 546-56, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26313959

ABSTRACT

Termites are major plant decomposers in tropical forest ecosystems, but their cryptic nature poses an obstacle for studying their ecological roles in depth. In the current study, we quantified climatic and geographic information of 137 termite collection sites in the Kenting National Park, Taiwan, and described the ecological niches and assemblage patterns of 13 termite species of three families. Three major assemblage patterns are reported. First, the three termite families were found in most landcovering types with similar number of species, which indicated that each family played a unique role in the ecosystem. Second, average numbers of termite species were not different among collection sites, but the total number of termite species found in each landcovering type was different, which indicated that termite niche capacity in each small area was the same but some landcovering types were composed of diverse microhabitats to host more termite species. Third, termite species of every family showed distinct moisture preferences in their habitat choices. In addition to the three assemblage patterns, we found that niche size of the advanced termite family, Termitidae, was larger than that of the primitive termite families, Rhinotermitidae or Kalotermitidae. The broader choices of cellulosic materials as food sources may allow Termitidae to adapt to more diverse environments than exclusive wood feeders. Termite niche quantification could further be used to study termite pest adaption in urban areas, interspecific competition between native and invasive species, and plant decomposition processes.


Subject(s)
Ecosystem , Isoptera/physiology , Tropical Climate , Animals , Forests , Geographic Information Systems , Taiwan
8.
PLoS One ; 9(7): e103453, 2014.
Article in English | MEDLINE | ID: mdl-25076053

ABSTRACT

Northern Gulf of Mexico (NGoM) loggerheads (Caretta caretta) make up one of the smallest subpopulations of this threatened species and have declining nest numbers. We used satellite telemetry and a switching state-space model to identify distinct foraging areas used by 59 NGoM loggerheads tagged during 2010-2013. We tagged turtles after nesting at three sites, 1 in Alabama (Gulf Shores; n = 37) and 2 in Florida (St. Joseph Peninsula; n = 20 and Eglin Air Force Base; n = 2). Peak migration time was 22 July to 9 August during which >40% of turtles were in migration mode; the mean post-nesting migration period was 23.0 d (±13.8 d SD). After displacement from nesting beaches, 44 turtles traveled to foraging sites where they remained resident throughout tracking durations. Selected foraging locations were variable distances from tagging sites, and in 5 geographic regions; no turtles selected foraging sites outside the Gulf of Mexico (GoM). Foraging sites delineated using 50% kernel density estimation were located a mean distance of 47.6 km from land and in water with mean depth of -32.5 m; other foraging sites, delineated using minimum convex polygons, were located a mean distance of 43.0 km from land and in water with a mean depth of -24.9 m. Foraging sites overlapped with known trawling activities, oil and gas extraction activities, and the footprint of surface oiling during the 2010 Deepwater Horizon oil spill (n = 10). Our results highlight the year-round use of habitats in the GoM by loggerheads that nest in the NGoM. Our findings indicate that protection of females in this subpopulation requires both international collaborations and management of threats that spatially overlap with distinct foraging habitats.


Subject(s)
Conservation of Natural Resources , Turtles/physiology , Animal Migration , Animals , Ecosystem , Female , Gulf of Mexico
9.
Biol Lett ; 10(3): 20140040, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24647727

ABSTRACT

Navigational ability is a critical component of an animal's spatial ecology and may influence the invasive potential of species. Burmese pythons (Python molurus bivittatus) are apex predators invasive to South Florida. We tracked the movements of 12 adult Burmese pythons in Everglades National Park, six of which were translocated 21-36 km from their capture locations. Translocated snakes oriented movement homeward relative to the capture location, and five of six snakes returned to within 5 km of the original capture location. Translocated snakes moved straighter and faster than control snakes and displayed movement path structure indicative of oriented movement. This study provides evidence that Burmese pythons have navigational map and compass senses and has implications for predictions of spatial spread and impacts as well as our understanding of reptile cognitive abilities.


Subject(s)
Boidae/physiology , Homing Behavior , Introduced Species , Orientation , Animals , Florida , Telemetry
10.
Ecol Evol ; 3(7): 2002-12, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23919146

ABSTRACT

For many marine species, locations of key foraging areas are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to identify distinct foraging areas used by Kemp's ridley turtles (Lepidochelys kempii) tagged after nesting during 1998-2011 at Padre Island National Seashore, Texas, USA (PAIS; N = 22), and Rancho Nuevo, Tamaulipas, Mexico (RN; N = 9). Overall, turtles traveled a mean distance of 793.1 km (±347.8 SD) to foraging sites, where 24 of 31 turtles showed foraging area fidelity (FAF) over time (N = 22 in USA, N = 2 in Mexico). Multiple turtles foraged along their migratory route, prior to arrival at their "final" foraging sites. We identified new foraging "hotspots" where adult female Kemp's ridley turtles spent 44% of their time during tracking (i.e., 2641/6009 tracking days in foraging mode). Nearshore Gulf of Mexico waters served as foraging habitat for all turtles tracked in this study; final foraging sites were located in water <68 m deep and a mean distance of 33.2 km (±25.3 SD) from the nearest mainland coast. Distance to release site, distance to mainland shore, annual mean sea surface temperature, bathymetry, and net primary production were significant predictors of sites where turtles spent large numbers of days in foraging mode. Spatial similarity of particular foraging sites selected by different turtles over the 13-year tracking period indicates that these areas represent critical foraging habitat, particularly in waters off Louisiana. Furthermore, the wide distribution of foraging sites indicates that a foraging corridor exists for Kemp's ridleys in the Gulf. Our results highlight the need for further study of environmental and bathymetric components of foraging sites and prey resources contained therein, as well as international cooperation to protect essential at-sea foraging habitats for this imperiled species.

11.
PLoS One ; 8(7): e66921, 2013.
Article in English | MEDLINE | ID: mdl-23843971

ABSTRACT

Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0 ± 930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of -31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of -15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km(2) (50% KDEs, n = 10) and 741.4 km(2) (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.


Subject(s)
Animal Migration , Ecosystem , Nesting Behavior , Turtles/physiology , Animals , Environment , Female , Geography , Gulf of Mexico , Population Density , Reproduction/physiology
12.
J Econ Entomol ; 106(1): 311-21, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23448046

ABSTRACT

Coptotermes gestroi (Wasmann) is an important structural pest reported from Asia, Pacific islands, North America, Caribbean islands, South America, and Indian Ocean islands. This study summarized previous records of C. gestroi and its synonyms, presenting 184 infested counties from 24 countries. Based on the geo-references occurrence locations and global raster data of climate, geography, and human population, C. gestroi were found most commonly in warm, high precipitation, low altitude, and human populated areas. By using species distribution models, we predicted its current infested area (model 1), habitat suitability (model 2), and probability of introduction (model 3) on a global scale. The results showed its recorded locations and the predicted distribution of the present day are similar, but the suitable habitat is larger than its current distribution. The patterns of the introduction frequency (model 3) and habitat suitability (model 2) are inconsistent. Temperate cities with high introduction risk are located in Europe, United Sates, northeastern China, and Japan where habitat suitability is low and hence successful colonization is unlikely. In tropics and subtropics, habitat suitability of C. gestroi is high. We speculate that continuous urbanization and increasing human population will increase its introduction frequency and cause further extension in fast developing tropical and subtropical countries.


Subject(s)
Ecosystem , Isoptera , Models, Biological , Animals , Climate , Computer Simulation , Geography
SELECTION OF CITATIONS
SEARCH DETAIL
...